Robert A Fecik

University of Minnesota Duluth, Duluth, Minnesota, United States

Are you Robert A Fecik?

Claim your profile

Publications (15)112.33 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: A general strategy to enzymatically label acyl carrier proteins (ACPs) of polyketide synthases has been developed. Incorporation of a chloromethyl ketone or vinyl ketone moiety into polyketide chain elongation intermediate mimics allows for the synthesis of CoA adducts. These CoA adducts undergo enzymatic reaction with Sfp, a phosphopantetheinyl transferase, to afford labeled CurB carrier proteins.
    Bioorganic & medicinal chemistry letters 10/2010; 20(19):5939-42. · 2.65 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: A stereoselective total synthesis of the cytotoxic natural products tubulysin U, tubulysin V, and its unnatural epimer epi-tubulysin V, is reported. Simplified analogues containing N,N-dimethyl-D-alanine as a replacement for the N-terminal N-Me-pipecolinic acid residue of the tubulysins are also disclosed. Biological evaluation of these natural products and analogues provided key information with regard to structural and stereochemical requirements for antiproliferative activity and tubulin polymerization inhibition.
    Journal of Medicinal Chemistry 01/2009; 52(2):238-40. · 5.61 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: A series of tubulysin analogs in which one of the stereogenic centers of tubuphenylalanine was eliminated were synthesized. All compounds were tested for antiproliferative activity towards ovarian cancer cells and for inhibition of tubulin polymerization. The dimethyl analogs were generally more active than the desmethyl analogs, and four analogs have tubulin polymerization IC(50) values similar to combretastatin A4 and the hemiasterlin analog HTI-286.
    Bioorganic & medicinal chemistry letters 06/2008; 18(9):2996-9. · 2.65 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: An efficient route for the synthesis of the tubulysin family of antimitotic peptides was developed. Simplified tubulysin analogues were synthesized to define the minimum pharmacophore required for cytotoxicity. Simplified tubulysin analogues retain significant cytotoxicity and reveal important preliminary structure-activity relationships.
    Journal of Medicinal Chemistry 04/2008; 51(6):1530-3. · 5.61 Impact Factor
  • Robert A Fecik
    Nature Chemical Biology 10/2007; 3(9):531-2. · 12.95 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: An improved total synthesis of narbonolide and its biotransformation to pikromycin is reported. This total synthesis utilized an intramolecular Nozaki-Hiyama-Kishi coupling that significantly improved macrocyclization yields (90-96%) and allowed for differentiation of the C3- and C5-oxidation states. A pikAI deletion mutant of Streptomyces venezuelae was used to biotransform synthetic narbonolide to pikromycin by glycosylation and oxidation in vivo. This integration of synthetic chemistry and engineered biotransformations holds great promise for the synthesis of novel macrolide analogues of biological interest.
    The Journal of Organic Chemistry 01/2007; 71(26):9853-6. · 4.56 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Polyketides are a diverse class of natural products having important clinical properties, including antibiotic, immunosuppressive and anticancer activities. They are biosynthesized by polyketide synthases (PKSs), which are modular, multienzyme complexes that sequentially condense simple carboxylic acid derivatives. The final reaction in many PKSs involves thioesterase-catalyzed cyclization of linear chain elongation intermediates. As the substrate in PKSs is presented by a tethered acyl carrier protein, introduction of substrate by diffusion is problematic, and no substrate-bound type I PKS domain structure has been reported so far. We describe the chemical synthesis of polyketide-based affinity labels that covalently modify the active site serine of excised pikromycin thioesterase from Streptomyces venezuelae. Crystal structures reported here of the affinity label-pikromycin thioesterase adducts provide important mechanistic insights. These results suggest that affinity labels can be valuable tools for understanding the mechanisms of individual steps within multifunctional PKSs and for directing rational engineering of PKS domains for combinatorial biosynthesis.
    Nature Chemical Biology 11/2006; 2(10):531-6. · 12.95 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Polyketides are a class of biologically active microbial and plant-derived metabolites that possess a high degree of structural and functional diversity and include many human therapeutics, among them anti-infective and anti-cancer drugs, growth promoters and anti-parasitic agents. The macrolide antibiotics, characterized by a glycoside-linked macrolactone, constitute an important class of polyketides, including erythromycin and the natural ketolide anti-infective agent pikromycin. Here we describe new mechanistic details of macrolactone ring formation catalyzed by the pikromycin polyketide synthase thioesterase domain from Streptomyces venezuelae. A pentaketide phosphonate mimic of the final pikromycin linear chain-elongation intermediate was synthesized and shown to be an active site affinity label. The crystal structures of the affinity-labeled enzyme and of a 12-membered-ring macrolactone product complex suggest a mechanism for cyclization in which a hydrophilic barrier in the enzyme and structural restraints of the substrate induce a curled conformation to direct macrolactone ring formation.
    Nature Chemical Biology 11/2006; 2(10):537-42. · 12.95 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The discovery of the clinical effectiveness of erythromycin and azithromycin in inflammatory airway diseases has inspired the discovery and development of macrolides with selective immunomodulatory activity. Erythromycin degradation continues to be a source of novel macrolides with a variety of selective biological activities. New technologies for drug discovery based in the emerging field of combinatorial biosynthesis provide the medicinal chemist with novel approaches toward the discovery of novel macrolides. Recent efforts to integrate synthetic organic medicinal chemistry with combinatorial biosynthesis have expanded the number of techniques available for macrolide synthesis.
    Current opinion in drug discovery & development 12/2005; 8(6):741-7. · 5.12 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: [reaction: see text] An improved synthesis of (3S)-3-dihydronarbonolide is reported that constitutes a formal total synthesis of the 14-membered macrolactone antibiotic narbonolide. The key step was an intramolecular Nozaki-Hiyama-Kishi coupling to accomplish macrocyclization in improved yield. The high level of convergence will also allow us to rapidly synthesize narbonolide analogues for the study of enzymes in the pikromycin biosynthetic pathway.
    The Journal of Organic Chemistry 10/2005; 70(18):7267-72. · 4.56 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The unique ability of the pikromycin (Pik) polyketide synthase to generate 12- and 14-membered ring macrolactones presents an opportunity to explore the fundamental processes underlying polyketide synthesis, specifically the mechanistic details of chain extension, keto group processing, acyl chain release, and macrocyclization. We have synthesized the natural pentaketide and hexaketide chain elongation intermediates as N-acetyl cysteamine (NAC) thioesters and have used them as substrates for in vitro conversions with engineered PikAIII+TE and in combination with native PikAIII (module 5) and PikAIV (module 6) multifunctional proteins. This investigation demonstrates directly the remarkable ability of these monomodules to catalyze one or two chain extension reactions, keto group processing steps, acyl-ACP release, and cyclization to generate 10-deoxymethynolide and narbonolide. The results reveal the enormous preference of Pik monomodules for their natural polyketide substrates and provide an important comparative analysis with previous studies using unnatural diketide NAC thioester substrates.
    Journal of the American Chemical Society 07/2005; 127(23):8441-52. · 10.68 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The polyketide synthase-derived pikromycin thioesterase (Pik TE) is unique in its ability to catalyze the cyclization of 12- and 14-membered macrolactones. In this investigation, the total synthesis of the natural hexaketide chain elongation intermediate as its N-acetyl cysteamine (NAC) thioester has been achieved, and its reaction with Pik TE demonstrated the ability of Pik TE to catalyze its macrolactonization to the natural product 10-deoxymethynolide. A steady-state kinetic analysis of the hexaketide chain intermediate with Pik TE was done. A preliminary substrate specificity study with unnatural hexaketide analogues was accomplished, demonstrating the importance of total synthesis in obtaining access to advanced polyketide intermediates. The results show the sensitivity of Pik TE to minor substrate modifications, and illustrate the potential use of thioesterases as versatile macrolactonization catalysts.
    Journal of the American Chemical Society 07/2005; 127(25):8910-1. · 10.68 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The unique ability of the pikromycin (Pik) polyketide synthase to generate 12- and 14-membered ring macrolactones presents an opportunity to explore the fundamental processes underlying polyketide synthesis, specifically the mechanistic details of the chain extension process. We have overexpressed and purified PikAIII (module 5) and PikAIV (module 6) and assessed the ability of these proteins to generate tri- and tetraketide lactone products using N-acetylcysteamine-activated diketides and (14)C-methylmalonyl-CoA as substrates. Comparison of the stereochemical specificities for PikAIII and PikAIV and the reported values for the DEBS modules reveals significant differences between these systems.
    Journal of the American Chemical Society 11/2003; 125(41):12551-7. · 10.68 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The unique ability of the pikromycin polyketide synthase (Pik PKS) to generate 12- and 14-membered ring macrolactones presents an opportunity to explore the fundamental processes of polyketide synthesis, specifically, the mechanistic details of the chain extension process. We have overexpressed and purified PikAIII and PikAIV and demonstrated the ability of these proteins to generate triketide lactone products using (14)C-methylmalonyl-CoA as the sole substrate. Monomodular PikAIII generates TKL (1) when reacted alone, and synthesizes TKL (2) upon reaction in combination with PikAIV. Product formation remains dependent on the enzymatic decarboxylation of methylmalonyl-CoA and transfer of the acyl chain within the enzyme rather than acylation by propionyl-CoA from spontaneous decarboxylation. We propose that synthesis of TKL (1) by PikAIII involves iterative assembly of the triketide chain within a PikAIII homodimer analogous to the nonmodular type I PKS systems.
    Journal of the American Chemical Society 05/2003; 125(16):4682-3. · 10.68 Impact Factor
  • Source
    R. A. Fecik

Publication Stats

205 Citations
112.33 Total Impact Points

Institutions

  • 2003–2010
    • University of Minnesota Duluth
      Duluth, Minnesota, United States
    • University of Minnesota Twin Cities
      • • Department of Medicinal Chemistry
      • • BioTechnology Institute
      Minneapolis, MN, United States
  • 2005
    • University of Michigan
      • Department of Medicinal Chemistry
      Ann Arbor, MI, United States