Huang Huang

Xiamen University, Amoy, Fujian, China

Are you Huang Huang?

Claim your profile

Publications (8)9.42 Total impact

  • [show abstract] [hide abstract]
    ABSTRACT: Tyrosinase (EC 1.14.18.1) catalyzes both the hydroxylation of tyrosine into o-diphenols and the oxidation of o-diphenols into o-quinones which form brown or black pigments. Here, the inhibitory effects of 4-vinylbenzaldehyde and 4-vinylbenzoic acid on the activity of mushroom tyrosinase have been investigated. The results showed that both 4-vinylbenzaldehyde and 4-vinylbenzoic acid could inhibit both monophenolase activity and diphenolase activity of the enzyme. For the monophenolase activity, 4-vinylbenzoic acid could lengthen the lag time, but 4-vinylbenzaldehyde could not. Both 4-vinylbenzaldehyde and 4-vinylbenzoic acid decreased the steady-state activity, and the IC50 values were estimated as 93 microM and 3.0 mM for monophenolase activity, respectively. For the diphenolase activity, the inhibitory capacity of 4-vinylbenzaldehyde was stronger than that of 4-vinylbenzoic acid, and the IC50 values were estimated as 23 microM and 0.33 mM, respectively. Kinetic analyses showed that inhibition by both compounds was reversible and their mechanisms were mixed-II type; their inhibition constants were also determined and compared.
    Journal of Enzyme Inhibition and Medicinal Chemistry 07/2005; 20(3):239-43. · 1.50 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: The inhibitory kinetics of the diphenolase of mushroom tyrosinase by seven p-alkoxybenzoic acids has been studied. The results show that these derivatives of benzoic acid behave as reversible inhibitors. Among them, p-hydroxybenzoic acid is competitive, while p-methoxybenzoic acid is non-competitive, p-ethoxybenzoic acid is mixed-II type, and the rest all behave as classical uncompetitive inhibitors. The inhibition constants of all of the seven compounds assayed, characterizing the inhibition, were evaluated. The models of the interactions between the enzyme and the inhibitors are compared.
    Food Chemistry. 01/2005;
  • [show abstract] [hide abstract]
    ABSTRACT: The effects of hexylresorcinol and dodecylresorcinol on the monophenolase and diphenolase activity of mushroom tyrosinase have been studied. The results show that hexylresorcinol and dodecylresorcinol can inhibit both monophenolase and diphenolase activity of the enzyme. The lag period of the enzyme was obviously lengthened, and the steady-state activity of the enzyme decreased sharply. Two microM of hexylresorcinol and dodecylresorcinol can lengthen the lag period from 98 s to 260 and 275 s, respectively. Both hexylresorcinol and dodecylresorcinol can lead to reversible inhibition of the enzyme. The IC50 values of hexylresorcinol and dodecylresorcinol were estimated as 1.24 and 1.15 microM for monophenolase and as 0.85 and 0.80 microM for diphenolase, respectively. A kinetic analysis shows that hexylresorcinol and dodecylresorcinol are competitive inhibitors. The apparent inhibition constant for hexylresorcinol and dodecylresorcinol binding with free enzyme has been determined to be 0.443 and 0.405 microM for diphenolase, respectively.
    The Protein Journal 03/2004; 23(2):135-41. · 1.13 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: The inhibition kinetics on the diphenolase activity of mushroom tyrosinase by some alkylbenzaldehydes has been investigated. The results show that the alkylbenzaldehydes assayed can lead to reversible inhibition to the enzyme; o-tolualdehyde and m-tolualdehyde are mixed-type inhibitors and p-alkylbenzaldehydes are uncompetitive inhibitors. For the p-alkylbenzaldehydes, the inhibition potency follows the order: p-tolualdehyde < p-ethylbenzaldehyde < p-propylbenzaldehyde = p-Isopropylbenzaldehyde < p-tert-butylbenzaldehyde = p-butylbenzaldehyde < p-pentylbenzaldehyde < p-hexylbenzaldehyde > p-heptylbenzaldehyde > p-octylbenzaldehyde, indicating the hydrophobic p-alkyl group played an important role in inhibition to the enzyme. The inhibitory effects of alkylbenzaldehydes on the monophenolase activity have also been studied. The results show that o-tolualdehyde and m-tolualdehyde can lengthen the lag time and decrease the steady-state activity of the enzyme, but p-alkylbenzaldehydes only decrease the steady-state activity and do not lengthen the lag time, indicating that their inhibitory mechanisms are different.
    Journal of Enzyme Inhibition and Medicinal Chemistry 12/2003; 18(6):491-6. · 1.50 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: Mushroom tyrosinase (EC 1.14.18.1), a copper containing oxidase, catalyzes both the hydroxylation of tyrosine into o-diphenols and the oxidation of o-diphenols into o-quinones. In the current study, the effects of 4-cyanobenzaldehyde and 4-cyanobenzoic acid on the monophenolase and diphenolase activities of mushroom tyrosinase have been studied. The results show that 4-cyanobenzaldehyde and 4-cyanobenzoic acid can inhibit both the monophenolase activity and the diphenolase activity of mushroom tyrosinase. The lag phase of tyrosine oxidation catalyzed by the enzyme was obviously lengthened, and the steady-state activity of the enzyme decreased sharply. 1.0 mM 4-cyanobenzaldehyde and 4-cyanobenzoic acid can lengthen the lag phase from 78 s to 134 and 115 s, respectively. Both 4-cyanobenzaldehyde and 4-cyanobenzoic acid can lead to reversible inhibition of the enzyme. The IC50 values of 4-cyanobenzaldehyde and 4-cyanobenzoic acid were estimated as 0.62 and 2.45 mM for monophenolase and as 0.72 and 1.40 mM for diphenolase, respectively. A kinetic analysis shows that 4-cyanobenzaldehyde and 4-cyanobenzoic acid are mixed-type inhibitors for the diphenolase. The apparent inhibition constants for 4-cyanobenzaldehyde and 4-cyanobenzoic acid binding with both the free enzyme and the enzyme-substrate complex have been determined and compared.
    Journal of Protein Chemistry 12/2003; 22(7-8):607-12.
  • [show abstract] [hide abstract]
    ABSTRACT: Changes of activity and conformation of Ampullarium crossean beta-glucosidase in different concentrations of guanidine hydrochloride (GuHCl) have been studied by measuring the fluorescence spectra and its relative activity after denaturation. The fluorescence intensity of the enzyme decreased distinctly with increasing guanidine concentrations, the emission peaks appeared red shifted (from 338.4 to 350.8 nm), whereas a new fluorescence emission peak appeared near 310 nm. Changes in the conformation and catalytic activity of the enzyme were compared. A corresponding rapid decrease in catalytic activity of the enzyme was also observed. The extent of inactivation was greater than that of conformational changes, indicating that the active site of the enzyme is more flexible than the whole enzyme molecule. k(+0)>k(+0)' also showed that the enzyme was protected by substrate to a certain extent during guanidine denaturation.
    The International Journal of Biochemistry & Cell Biology 08/2003; 35(8):1227-33. · 4.15 Impact Factor
  • Qing-Xi Chen, Huang Huang, Isao Kubo
    [show abstract] [hide abstract]
    ABSTRACT: Cetylpyridinium chloride (CPC) was found to inactivate tyrosinase from mushroom (Agaricus bisporus). CPC can bind to the enzyme molecule and induce the enzyme conformation changes. The fluorescence intensity (at 338.4 nm) of the enzyme decreased distinctly with increasing CPC concentrations, and a new little fluorescence emission peak appeared near 372 nm. The inactivation of the enzyme by CPC had first been studied by using the kinetic method of the substrate reaction described by Tsou. The results showed that the enzyme was inactivated by a complex mechanism that had not been previously identified. The enzyme first quickly binds with CPC reversibly and then undergoes a slow irreversible inactivation. The inactivation reaction is a single molecule reaction and the apparent inactivation rate constant is a saturated trend being independent of CPC concentration if the concentration is sufficiently high. The micro rate constants of inactivation and the association constant were determined.
    Journal of Protein Chemistry 08/2003; 22(5):481-7.
  • [show abstract] [hide abstract]
    ABSTRACT: Mushroom tyrosinase (EC 1.14.18.1) is a copper containing oxidase that catalyzes both the hydroxylation of tyrosine into o-diphenols and the oxidation of o-diphenols into o-quinones, and then forms brown or black pigments. In the present study, the effects of some flavonoids on the oxidation of L-3,4-dihydroxyphenylalanine (L-DOPA) have been studied. The results show that flavonoids can lead to reversible inhibition of the enzyme. A kinetic analysis showed that the flavonols are competitive inhibitors, whereas luteolin is an uncompetitive inhibitor. The rank order of inhibition was: quercetin > galangin > morin; fisetin > 3,7,4;-trihydroxyflavone; luteolin > apigenin > chrysin.
    Biochemistry (Moscow) 04/2003; 68(4):487-91. · 1.15 Impact Factor