Tsung-Ying Yang

National Yang Ming University, T’ai-pei, Taipei, Taiwan

Are you Tsung-Ying Yang?

Claim your profile

Publications (38)210.97 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: We previously carried out a multi-stage genome-wide association study (GWAS) on lung cancer among never smokers in the Female Lung Cancer Consortium in Asia (FLCCA) (6,609 cases, 7,457 controls) that identified novel susceptibility loci at 10q25.2, 6q22.2, and 6p21.32, and confirmed two previously identified loci at 5p15.33 and 3q28. Household air pollution (HAP) attributed to solid fuel burning for heating and cooking, is the leading cause of the overall disease burden in Southeast Asia, and is known to contain lung carcinogens. To evaluate the gene-HAP interactions associated with lung cancer in loci independent of smoking, we analyzed data from studies participating in FLCCA with fuel use information available (n = 3; 1,731 cases; 1,349 controls). Coal use was associated with a 30 % increased risk of lung cancer (OR 1.3, 95 % CI 1.0-1.6). Among the five a priori SNPs identified by our GWAS, two showed a significant interaction with coal use (HLA Class II rs2395185, p = 0.02; TP63 rs4488809 (rs4600802), p = 0.04). The risk of lung cancer associated with coal exposure varied with the respective alleles for these two SNPs. Our observations provide evidence that genetic variation in HLA Class II and TP63 may modify the association between HAP and lung cancer risk. The roles played in the cell cycle and inflammation pathways by the proteins encoded by these two genes provide biological plausibility for these interactions; however, additional replication studies are needed in other non-smoking populations.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: It is important to select appropriate targeted therapies for subgroups of patients with lung adenocarcinoma who have specific gene alterations. This prospective study was a multicenter project conducted in Taiwan for assessment of lung adenocarcinoma genetic tests. Five oncogenic drivers, including EGFR, KRAS, BRAF, HER2 and EML4-ALK fusion mutations, were tested. EGFR, KRAS, BRAF and HER2 mutations were assessed by MALDI-TOF MS (Cohort 1). EML4-ALK translocation was tested by Ventana method in EGFR-wild type patients (Cohort 2). From August 2011 to November 2013, a total of 1772 patients with lung adenocarcinoma were enrolled. In Cohort 1 analysis, EGFR, KRAS, HER2 and BRAF mutations were identified in 987 (55.7%), 93 (5.2%), 36 (2.0%) and 12 (0.7%) patients, respectively. Most of these mutations were mutually exclusive, except for co-mutations in seven patients (3 with EGFR + KRAS, 3 with EGFR + HER2 and 1 with KRAS + BRAF). In Cohort 2 analysis, 29 of 295 EGFR-wild type patients (9.8%) were positive for EML4-ALK translocation. EGFR mutations were more common in female patients and non-smokers and KRAS mutations were more common in male patients and smokers. Gender and smoking status were not correlated significantly with HER2, BRAF and EML4-ALK mutations. EML4-ALK translocation was more common in patients with younger age. This was the first study in Taiwan to explore the incidence of five oncogenic drivers in patients with lung adenocarcinoma and the results could be valuable for physicians in consideration of targeted therapy and inclusion of clinical trials.
    PLoS ONE 01/2015; 10(3):e0120852. DOI:10.1371/journal.pone.0120852 · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Recent evidence from several relatively small nested case-control studies in prospective cohorts shows an association between longer telomere length measured phenotypically in peripheral white blood cell (WBC) DNA and increased lung cancer risk. We sought to further explore this relationship by examining a panel of 7 telomere-length associated genetic variants in a large study of 5,457 never-smoking female Asian lung cancer cases and 4,493 never-smoking female Asian controls using data from a previously reported genome-wide association study. Using a group of 1,536 individuals with phenotypically measured telomere length in WBCs in the prospective Shanghai Women's Health study, we demonstrated the utility of a genetic risk score (GRS) of 7 telomere-length associated variants to predict telomere length in an Asian population. We then found that GRSs used as instrumental variables to predict longer telomere length were associated with increased lung cancer risk (OR = 1.51 (95% CI=1.34-1.69) for upper vs. lower quartile of the weighted GRS, P-value=4.54 × 10(-14) ) even after removing rs2736100 (P-value=4.81 × 10(-3) ), a SNP in the TERT locus robustly associated with lung cancer risk in prior association studies. Stratified analyses suggested the effect of the telomere-associated GRS is strongest among younger individuals. We found no difference in GRS effect between adenocarcinoma and squamous cell subtypes. Our results indicate that a genetic background that favors longer telomere length may increase lung cancer risk, which is consistent with earlier prospective studies relating longer telomere length with increased lung cancer risk. This article is protected by copyright. All rights reserved. © 2014 UICC.
    International Journal of Cancer 12/2014; DOI:10.1002/ijc.29393 · 5.01 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Epidermal growth factor receptor (EGFR) mutation status in lung cancer can effectively predict EGFR-tyrosine kinase inhibitor (TKI) efficacy. We evaluated the role of dynamic plasma cell-free DNA (cfDNA) EGFR mutation status in outcome prediction. Advanced lung adenocarcinoma patients were enrolled and prospectively observed for outcomes of EGFR-TKI treatment. Peptide nucleic acid-Zip nucleic acid polymerase chain reaction (PNA-ZNA PCR) clamp method was developed to assess EGFR mutations in matched tumor and serial plasma cfDNA specimens. A total of 72 patients were enrolled in this study, of which 62 (86.1%) had EGFR-mutant tumors (34 with exon 19 deletions, and 28 with L858R). Pretreatment plasma used for EGFR mutation testing showed a sensitivity of 59.7% and a specificity of 100%. Detection sensitivity was significantly higher in stage IV-M1b patients compared to stage IIIb and IV-M1a patients (78.0% vs. 23.8%, P < 0.001). All patients who presented with EGFR-mutant tumors received first-line EGFR-TKI therapy. The objective response rate and disease control rate (DCR) were 74.2% and 82.3%, respectively. Median progression-free survival (PFS) and overall survival (OS) were 8.8 months (95% CI 6.6-11.0) and 20.5 months (95% CI 15.1-26.0), respectively. Failure to clear plasma EGFR mutations after EGFR-TKI treatment was an independent predictor of lower DCR (odds ratio 5.26 [95% CI 1.13-24.44], P = 0.034), shorter PFS (HR 1.97 [95% CI 1.33-2.91], P = 0.001), and shorter OS (HR 1.82 [95% CI 1.04-3.18], P = 0.036). Changes in plasma EGFR mutation status can be successfully assessed using the PNA-ZNA PCR clamp method and can serve as an independent outcome predictor.
    Journal of thoracic oncology: official publication of the International Association for the Study of Lung Cancer 12/2014; DOI:10.1097/JTO.0000000000000443 · 4.55 Impact Factor
  • Source
    Mei-Chih Chen, Shih-Lan Hsu, Ho Lin, Tsung-Ying Yang
    [Show abstract] [Hide abstract]
    ABSTRACT: Retinoic acid which belongs to the retinoid class of chemical compounds is an important metabolite of vitamin A in diets. It is currently understood that retinoic acid plays important roles in cell development and differentiation as well as cancer treatment. Lung, prostate, breast, ovarian, bladder, oral, and skin cancers have been demonstrated to be suppressed by retinoic acid. Our results also show that low doses and high doses of retinoic acid may respectively cause cell cycle arrest and apoptosis of cancer cells. Also, the common cell cycle inhibiting protein, p27, and the new cell cycle regulator, Cdk5, are involved in retinoic acid's effects. These results provide new evidence indicating that the molecular mechanisms of/in retinoic acid may control cancer cells' fates. Since high doses of retinoic acid may lead to cytotoxicity, it is probably best utilized as a potential supplement in one's daily diet to prevent or suppress cancer progression. In this review, we have collected numerous references demonstrating the findings of retinoic acid in melanoma, hepatoma, lung cancer, breast cancer, and prostate cancer. We hope these observations will shed light on the future investigation of retinoic acid in cancer prevention and therapy.
    12/2014; 4:22. DOI:10.7603/s40681-014-0022-1
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Methods used for epidermal growth factor receptor (EGFR) mutation testing vary widely. The impact of detection methods on the rates of response to EGFR-tyrosine kinase inhibitors (TKIs) in EGFR-wild type (wt) lung adenocarcinoma patients is unknown.
    PLoS ONE 09/2014; 9(9):e107160. DOI:10.1371/journal.pone.0107160 · 3.53 Impact Factor
  • Source
    Life Sciences 07/2014; 109(2):127. DOI:10.1016/j.lfs.2014.07.001 · 2.30 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Pemetrexed is approved for first-line and maintenance treatment of patients with advanced or metastatic non-small-cell lung cancer (NSCLC). The protein kinase Akt/protein kinase B is a well-known regulator of cell survival which is activated by pemetrexed, but its role in pemetrexed-mediated cell death and its molecular mechanisms are unclear. This study showed that stimulation with pemetrexed induced S-phase arrest and cell apoptosis and a parallel increase in sustained Akt phosphorylation and nuclear accumulation in the NSCLC A549 cell line. Inhibition of Akt expression by Akt specific siRNA blocked S-phase arrest and protected cells from apoptosis, indicating an unexpected proapoptotic role of Akt in the pemetrexed-mediated toxicity. Treatment of A549 cells with pharmacological inhibitors of phosphatidylinositol 3-kinase (PI3K), wortmannin and Ly294002, similarly inhibited pemetrexed-induced S-phase arrest and apoptosis and Akt phosphorylation, indicating that PI3K is an upstream mediator of Akt and is involved in pemetrexed-mediated cell death. Previously, we identified cyclin A-associated cyclin-dependent kinase 2 (Cdk2) as the principal kinase that was required for pemetrexed-induced S-phase arrest and apoptosis. The current study showed that inhibition of Akt function and expression by pharmacological inhibitors as well as Akt siRNA drastically inhibited cyclin A/Cdk2 activation. These pemetrexed-mediated biological and molecular events were also observed in a H1299 cell line. Overall, our results indicate that, in contrast to its normal prosurvival role, the activated Akt plays a proapoptotic role in pemetrexed-mediated S-phase arrest and cell death through a mechanism that involves Cdk2/cyclin A activation.
    PLoS ONE 05/2014; 9(5):e97888. DOI:10.1371/journal.pone.0097888 · 3.53 Impact Factor
    This article is viewable in ResearchGate's enriched format
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Tumor cells before and after epidermal growth-factor receptor (EGFR) tyrosine-kinase inhibitor (TKI) therapy might display different characteristics. The aim of this study was to evaluate the influence of prior EGFR TKI therapy on the efficacy of subsequent pemetrexed plus platinum (PP) in advanced chemonaïve patients with EGFR-mutant lung adenocarcinoma.
    OncoTargets and Therapy 01/2014; 7:799-805. DOI:10.2147/OTT.S62639 · 1.34 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Luteolin is a natural flavonoid that possesses a variety of pharmacological activities, such as anti-inflammatory and anti-cancer abilities. Whether luteolin regulates the transformation ability of Lung cancer cells remains unclear. The current study aims to uncover the effects and underling mechanisms of luteolin in regulation of and Epithelial-mesenchymal transition of lung cancer cells. The lung adenocarcinoma A549 cells were used in this experiment; the cells were pretreated with luteolin followed by administration with TGF-β1. The expression levels of various cadherin and related upstream regulatory modules were examined, KEY FINDINGS: Pretreatment of luteolin prevented the morphological change and downregulation of E-cadherin of A549 cells induced by TGF-β1. In addition, the activation of PI3K-AKT-IκBa-NF-κB-snail pathway which leading to the decline of E-cadherin induced by TGF-β1 also attenuated under the pretreatment of luteolin. We provide the mechanisms about how luteolin attenuated the Epithelial-mesenchymal transition of A549 lung cancer cells induced by TGF-β1. This finding will strengthen the anti-cancer effects of flavonoid compounds via the regulation of migration/invasion and EMT ability of various cancer cells.
    Life sciences 10/2013; 109(2). DOI:10.1016/j.lfs.2013.10.004 · 2.56 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Pemetrexed (MTA) is a multitargeted antifolate drug approved for lung cancer therapy. Clinically, supplementation with high doses of folic acid (FA) and vitamin B12 (VB12) lowers MTA cytotoxicities. An antagonistic effect of FA/VB12 on MTA efficacy has been proposed. However, patients who receive FA/VB12 show better tolerance to MTA with improved survival. The aims of this study are to investigate the modulation of FA and VB12 on MTA drug efficacy in human nonsmall cell lung cancer (NSCLC) cell lines. The sensitivities of cells, apoptosis, and MTA-regulated proteins were characterized to determine the possible effects of high doses of FA and VB12 on MTA efficacy. MTA has the lowest efficacy under 10% serum conditions. However, supplementation with FA and VB12 individually and additively reversed the insensitivity of NSCLC cells to MTA treatment with 10% serum. The enhanced sensitivities of cells following FA/VB12 treatment were correlated with increasing apoptosis and were specific to MTA but not to 5-fluorouracil (5-FU). Enhanced sensitivity was also associated with p21(WAF1/Cip1) expression level. Our results revealed no antagonistic effect of high doses of FA/VB12 on MTA efficacy in cancer cells grown in nutrient medium. Furthermore, these data may partially explain why supplementation of FA and VB12 resulted in better survival in MTA-treated patients.
    07/2013; 2013:389046. DOI:10.1155/2013/389046
    This article is viewable in ResearchGate's enriched format
  • [Show abstract] [Hide abstract]
    ABSTRACT: Pemetrexed, a new-generation antifolate, has demonstrated promising single-agent activity in front- and second-line treatments of non-small cell lung cancer. However, the molecular mechanism of pemetrexed-mediated antitumor activity remains unclear. The current study shows that pemetrexed induced DNA damage and caspase-2, -3, -8, and -9 activation in A549 cells and that treatment with caspase inhibitors significantly abolished cell death, suggesting a caspase-dependent apoptotic mechanism. The molecular events of pemetrexed-mediated apoptosis was associated with the activation of ataxia telangiectasia mutated (ATM)/p53-dependent and -independent signaling pathways, which promoted intrinsic and extrinsic apoptosis by upregulating Bax, PUMA, Fas, DR4, and DR5 and activating the caspase signaling cascade. Supplementation with dTTP allowed normal S-phase progression and rescued apoptotic death in response to pemetrexed. Overall, our findings reveal that the decrease of thymidylate synthase and the increase of Bax, PUMA, Fas, DR4, and DR5 genes may serve as biomarkers for predicting responsiveness to pemetrexed. © 2011 Wiley Periodicals, Inc.
    Molecular Carcinogenesis 03/2013; 52(3). DOI:10.1002/mc.21842 · 4.27 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Idiopathic pulmonary fibrosis is a chronic lung disorder characterized by fibroblasts proliferation and extracellular matrix accumulation. Induction of fibroblast apoptosis therefore plays a crucial role in the resolution of this disease. Gallic acid (3,4,5-trihydroxybenzoic acid), a common botanic phenolic compound, has been reported to induce apoptosis in tumor cell lines and renal fibroblasts. The present study was undertaken to examine the role of mitogen-activated protein kinases (MAPKs) in lung fibroblasts apoptosis induced by gallic acid. We found that treatment with gallic acid resulted in activation of c-Jun NH2-terminal kinase (JNK), extracellular signal-regulated kinase (ERK), and protein kinase B (PKB, Akt), but not p38MAPK, in mouse lung fibroblasts. Inhibition of JNK using pharmacologic inhibitor (SP600125) and genetic knockdown (JNK specific siRNA) significantly inhibited p53 accumulation, reduced PUMA and Fas expression, and abolished apoptosis induced by gallic acid. Moreover, treatment with antioxidants (vitamin C, N-acetyl cysteine, and catalase) effectively diminished gallic acid-induced hydrogen peroxide production, JNK and p53 activation, and cell death. These observations imply that gallic acid-mediated hydrogen peroxide formation acts as an initiator of JNK signaling pathways, leading to p53 activation and apoptosis in mouse lung fibroblasts.
    Evidence-based Complementary and Alternative Medicine 02/2013; 2013:613950. DOI:10.1155/2013/613950 · 2.18 Impact Factor
    This article is viewable in ResearchGate's enriched format
  • Cancer Chemotherapy and Pharmacology 02/2013; DOI:10.1007/s00280-013-2085-1 · 2.80 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: To identify common genetic variants that contribute to lung cancer susceptibility, we conducted a multistage genome-wide association study of lung cancer in Asian women who never smoked. We scanned 5,510 never-smoking female lung cancer cases and 4,544 controls drawn from 14 studies from mainland China, South Korea, Japan, Singapore, Taiwan and Hong Kong. We genotyped the most promising variants (associated at P < 5 × 10(-6)) in an additional 1,099 cases and 2,913 controls. We identified three new susceptibility loci at 10q25.2 (rs7086803, P = 3.54 × 10(-18)), 6q22.2 (rs9387478, P = 4.14 × 10(-10)) and 6p21.32 (rs2395185, P = 9.51 × 10(-9)). We also confirmed associations reported for loci at 5p15.33 and 3q28 and a recently reported finding at 17q24.3. We observed no evidence of association for lung cancer at 15q25 in never-smoking women in Asia, providing strong evidence that this locus is not associated with lung cancer independent of smoking.
    Nature Genetics 11/2012; DOI:10.1038/ng.2456 · 29.65 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: p53 plays an important role in mitotic checkpoint, but what its role is remains enigmatic. Aurora A is a Ser/Thr kinase involved in correcting progression of mitosis. Here, we show that p53 is a negative regulator for Aurora A. We found that p53 deficiency leads to Aurora A elevation. Ectopic expression of p53 or DNA damage-induced expression of p53 can suppress the expression of Aurora A. Mechanistic studies show that p53 is a negative regulator for Aurora A expression through both transcriptional and posttranslational regulation. p53 knockdown in cancer cells reduces the level of p21, which, in turn, increases the activity of CDK2 followed by induction of Rb1 hyperphosphorylation and its dissociation with transcriptional factor E2F3. E2F3 can bind to Aurora A gene promoter, potentiating Aurora A gene expression and p53 deficiency, enhancing the binding of E2F3 on Aurora A promoter. Also, p53 deficiency leads to decelerating Aurora A's turnover rate, due to the fact that p53 deficiency causes the downregulation of Fbw7α, a component of E3 ligase of Aurora A. Consistently, p53 knockdown-mediated Aurora A elevation is mitigated when Fbw7α is ectopically expressed. Thus, p53-mediated Aurora A degradation requires Fbw7α expression. Significantly, inverse correlation between p53 and Aurora A elevation is translated into the deregulation of centrosome amplification. p53 knockdown leads to high percentages of cells with abnormal amplification of centrosome. These data suggest that p53 is an important negative regulator of Aurora A, and that loss of p53 in many types of cancer could lead to abnormal elevation of Aurora A and dysregulated mitosis, which provides a growth advantage for cancer cells.
    Cell cycle (Georgetown, Tex.) 09/2012; 11(18):3433-42. DOI:10.4161/cc.21732 · 5.24 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Aurora B is a mitotic checkpoint kinase that plays a pivotal role in the cell cycle, ensuring correct chromosome segregation and normal progression through mitosis. Aurora B is overexpressed in many types of human cancers, which has made it an attractive target for cancer therapies. Tumor suppressor p53 is a genome guardian and important negative regulator of the cell cycle. Whether Aurora B and p53 are coordinately regulated during the cell cycle is not known. We report that Aurora B directly interacts with p53 at different subcellular localizations and during different phases of the cell cycle (for instance, at the nucleus in interphase and the centromeres in prometaphase of mitosis). We show that Aurora B phosphorylates p53 at S183, T211, and S215 to accelerate the degradation of p53 through the polyubiquitination-proteasome pathway, thus functionally suppressing the expression of p53 target genes involved in cell cycle inhibition and apoptosis (e.g., p21 and PUMA). Pharmacologic inhibition of Aurora B in cancer cells with WT p53 increased p53 protein level and expression of p53 target genes to inhibit tumor growth. Together, these results define a mechanism of p53 inactivation during the cell cycle and imply that oncogenic hyperactivation or overexpression of Aurora B may compromise the tumor suppressor function of p53. We have elucidated the antineoplastic mechanism for Aurora B kinase inhibitors in cancer cells with WT p53.
    Proceedings of the National Academy of Sciences 05/2012; 109(24):E1513-22. DOI:10.1073/pnas.1110287109 · 9.81 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We explored potential associations between genetic polymorphisms in genes related to DNA repair and detoxification metabolism and epidermal growth factor receptor (EGFR) mutations in a cohort of 410 never-smoking patients with lung adenocarcinoma. Multivariate-adjusted odds ratios (aORs) and corresponding 95% confidence intervals (CI) of EGFR mutation status in association with the genotypes of DNA repair and detoxification metabolism genes were evaluated using logistic regression analysis. We found an association between in-frame deletion in EGFR exon 19 and a single nucleotide polymorphism (SNP) rs1800566C/T located in NQO1 (aOR, 2.2 with 95% CI, 1.0-4.8) in female never-smokers. The SNP rs744154C/G in ERCC4 was also associated with the EGFR exon 19 in-frame deletion both in never-smokers (aOR, 1.7 with 95% CI, 1.0-3.0) and female never-smokers (aOR, 1.9 with 95% CI, 1.0-3.6). Although the association was marginally significant in multivariate logistic regression analysis, the A/A genotype of rs1047840 in EXO1 was associated with a 7.6-fold increase in the occurrence of the EGFR exon 19 in-frame deletion in female never-smokers. Moreover, risk alleles in NQO1, ERCC4 and EXO1 were associated with an increasing aOR of the EGFR exon 19 in-frame deletion both in never-smokers (p = 0.007 for trend) and female never-smokers (p = 0.002 for trend). Our findings suggest that the in-frame deletion in EGFR exon 19 is associated with polymorphisms in DNA repair and detoxification metabolism genes in never-smoking lung adenocarcinoma patients, especially in females.
    International Journal of Cancer 05/2012; DOI:10.1002/ijc.27630 · 6.20 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The effective targeted therapy for lung squamous cell carcinoma (SCC) is needed. The epidermal growth factor receptor (EGFR) mutation rate is low in lung SCC. The aim of this study was to evaluate the status of erlotinib treatment and EGFR mutation in lung SCC patients. We retrospectively enrolled lung cancer patients with SCC histology and history of erlotinib treatment. The primary objective was to assess overall response rate (ORR) and disease control rate (DCR) and the secondary objective was to assess progression-free survival (PFS) and overall survival (OS). EGFR mutations were assessed in parts of patients using both direct sequencing and protein nucleic acid-locked nucleic acid polymerase chain reaction (PNA-LNA PCR) clamp methods. In total, 92 patients were analyzed (75 men and 17 women, median age 69 years, and 74 current or former smokers). Sixteen patients achieved partial response and 9 had stable disease. The ORR was 17.4% and the DCR was 27.2%. The PFS and OS were longer in patients with disease control than with progressive disease (PFS 7.8 versus 1.3 months and OS 20.7 versus 2.7 months, both p<0.0001). The 1-year survival rate was 21.7%. In 27 patients with adequate specimens for molecular analysis (including 4 PR and 4 SD), two (7.4%) had EGFR complex mutations. One patient experienced response to erlotinib and the other did not. A significant proportion of lung SCC patients would derive a clinical benefit from erlotinib treatment. The relatively higher response rate than the EGFR mutation rate in present study needs further evaluation.
    Lung cancer (Amsterdam, Netherlands) 03/2012; 77(1):128-33. DOI:10.1016/j.lungcan.2012.02.012 · 3.14 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: A recent genome-wide association study (GWAS) of subjects from Japan and South Korea reported a novel association between the TP63 locus on chromosome 3q28 and risk of lung adenocarcinoma (p = 7.3 × 10(-12)); however, this association did not achieve genome-wide significance (p ≤ 10(-7)) among never-smoking males or females. To determine if this association with lung cancer risk is independent of tobacco use, we genotyped the TP63 SNPs reported by the previous GWAS (rs10937405 and rs4488809) in 3,467 never-smoking female lung cancer cases and 3,787 never-smoking female controls from 10 studies conducted in Taiwan, Mainland China, South Korea, and Singapore. Genetic variation in rs10937405 was associated with risk of lung adenocarcinoma [n = 2,529 cases; p = 7.1 × 10(-8); allelic risk = 0.80, 95% confidence interval (CI) = 0.74-0.87]. There was also evidence of association with squamous cell carcinoma of the lung (n = 302 cases; p = 0.037; allelic risk = 0.82, 95% CI = 0.67-0.99). Our findings provide strong evidence that genetic variation in TP63 is associated with the risk of lung adenocarcinoma among Asian females in the absence of tobacco smoking.
    Human Genetics 02/2012; 131(7):1197-203. DOI:10.1007/s00439-012-1144-8 · 4.52 Impact Factor

Publication Stats

482 Citations
210.97 Total Impact Points

Institutions

  • 2014
    • National Yang Ming University
      • Faculty of Medicine
      T’ai-pei, Taipei, Taiwan
  • 2003–2014
    • Taichung Veterans General Hospital
      • Department of Internal Medicine
      臺中市, Taiwan, Taiwan
  • 2010–2013
    • Chung Shan Medical University
      • Institute of Medicine
      臺中市, Taiwan, Taiwan
  • 2012
    • University of Texas MD Anderson Cancer Center
      • Department of Molecular and Cellular Oncology
      Houston, TX, United States
  • 2011
    • Taipei Medical University
      T’ai-pei, Taipei, Taiwan