Richard M Gallo

Indiana University-Purdue University School of Medicine, Indianapolis, Indiana, United States

Are you Richard M Gallo?

Claim your profile

Publications (14)57.93 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: CD1d molecules are structurally similar to MHC class I, but present lipid antigens as opposed to peptides. Here, we show that MHC class I molecules physically associate with (and regulate the functional expression of) mouse CD1d on the surface of cells. Low pH (3.0) acid stripping of MHC class I molecules resulted in increased surface expression of murine CD1d on antigen presenting cells as well as augmented CD1d-mediated antigen presentation to NKT cells. Consistent with the above results, TAP1-/- mice were found to have a higher percentage of type I NKT cells as compared to wild type mice. Moreover, bone marrow-derived dendritic cells from TAP1-/- mice showed increased antigen presentation by CD1d compared to wild type mice. Together, these results suggest that MHC class I molecules can regulate NKT cell function, in part, by masking CD1d.
    PLoS ONE 08/2013; 8(8):e72867. DOI:10.1371/journal.pone.0072867 · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: ErbB4 (HER4) is a member of the ErbB family of receptor tyrosine kinases, which includes the Epidermal Growth Factor Receptor (EGFR/ErbB1), ErbB2 (HER2/Neu), and ErbB3 (HER3). Mounting evidence indicates that ErbB4, unlike EGFR or ErbB2, functions as a tumor suppressor in many human malignancies. Previous analyses of the constitutively-dimerized and -active ErbB4 Q646C mutant indicate that ErbB4 kinase activity and phosphorylation of ErbB4 Tyr1056 are both required for the tumor suppressor activity of this mutant in human breast, prostate, and pancreatic cancer cell lines. However, the cytoplasmic region of ErbB4 possesses additional putative functional motifs, and the contributions of these functional motifs to ErbB4 tumor suppressor activity have been largely underexplored. Here we demonstrate that ErbB4 BH3 and LXXLL motifs, which are thought to mediate interactions with Bcl family proteins and steroid hormone receptors, respectively, are required for the tumor suppressor activity of the ErbB4 Q646C mutant. Furthermore, abrogation of the site of ErbB4 cleavage by gamma-secretase also disrupts the tumor suppressor activity of the ErbB4 Q646C mutant. This last result suggests that ErbB4 cleavage and subcellular trafficking of the ErbB4 cytoplasmic domain may be required for the tumor suppressor activity of the ErbB4 Q646C mutant. Indeed, here we demonstrate that mutants that disrupt ErbB4 kinase activity, ErbB4 phosphorylation at Tyr1056, or ErbB4 cleavage by gamma-secretase also disrupt ErbB4 trafficking away from the plasma membrane and to the cytoplasm. This supports a model for ErbB4 function in which ErbB4 tumor suppressor activity is dependent on ErbB4 trafficking away from the plasma membrane and to the cytoplasm, mitochondria, and/or the nucleus.
    08/2013; 1(1):10.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: CD1d molecules are MHC class I-like molecules that present lipid Ags to NKT cells. Although we have previously shown that several different cell signaling molecules can play a role in the control of Ag presentation by CD1d, a defined mechanism by which a cell signaling pathway regulates CD1d function has been unclear. In the current study, we have found that the Rho kinases, Rho-associated, coiled-coil containing protein kinase (ROCK)1 and ROCK2, negatively regulate both human and mouse CD1d-mediated Ag presentation. Inhibition of ROCK pharmacologically, through specific ROCK1 and ROCK2 short hairpin RNA, or by using dendritic cells generated from ROCK1-deficient mice all resulted in enhanced CD1d-mediated Ag presentation compared with controls. ROCK regulates the actin cytoskeleton by phosphorylating LIM kinase, which, in turn, phosphorylates cofilin, prohibiting actin fiber depolymerization. Treatment of APCs with the actin filament depolymerizing agent, cytochalasin D, as well as knockdown of LIM kinase by short hairpin RNA, resulted in enhanced Ag presentation to NKT cells by CD1d, consistent with our ROCK inhibition data. Therefore, our overall results reveal a model whereby CD1d-mediated Ag presentation is negatively regulated by ROCK via its effects on the actin cytoskeleton.
    The Journal of Immunology 07/2012; 189(4):1689-98. DOI:10.4049/jimmunol.1101484 · 5.36 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Epidermal growth factor (EGF) family peptides are ligands for the EGF receptor (EGFR). Here, we elucidate functional differences among EGFR ligands and mechanisms underlying these distinctions. In 32D/EGFR myeloid and MCF10A breast cells, soluble amphiregulin (AR), transforming growth factor alpha (TGFα), neuregulin 2 beta, and epigen stimulate greater EGFR coupling to cell proliferation and DNA synthesis than do EGF, betacellulin, heparin-binding EGF-like growth factor, and epiregulin. EGF competitively antagonizes AR, indicating that its functional differences reflect dissimilar intrinsic activity at EGFR. EGF stimulates much greater phosphorylation of EGFR Tyr1045 than does AR. Moreover, the EGFR Y1045F mutation and z-cbl dominant-negative mutant of the c-cbl ubiquitin ligase potentiate the effect of EGF but not of AR. Both EGF and AR stimulate phosphorylation of EGFR Tyr992. However, the EGFR Y992F mutation and phospholipase C gamma inhibitor U73122 reduce the effect of AR much more than that of EGF. Expression of TGFα in 32D/EGFR cells causes greater EGFR coupling to cell proliferation than does expression of EGF. Moreover, expression of EGF in 32D/EGFR cells causes these cells to be largely refractory to stimulation with soluble EGF. Thus, EGFR ligands are functionally distinct in models of paracrine and autocrine signaling and EGFR coupling to biological responses may be specified by competition among functionally distinct EGFR ligands.
    Growth factors (Chur, Switzerland) 01/2012; 30(2):107-16. DOI:10.3109/08977194.2011.649918 · 3.09 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The ErbB4 receptor tyrosine kinase possesses both tumour suppressor and oncogenic activities. Thus pharmacological agents are needed to help elucidate ErbB4 functions. However, limitations of existing ErbB4 agonists and antagonists have led us to seek novel ErbB4 antagonists. The Q43L mutant of the ErbB4 agonist NRG2β (neuregulin 2β) stimulates ErbB4 tyrosine phosphorylation, yet fails to stimulate ErbB4 coupling to cell proliferation. Thus in the present paper we hypothesize that NRG2β/Q43L may be an ErbB4 antagonist. NRG2β/Q43L competitively antagonizes agonist stimulation of ErbB4 coupling to cell proliferation. NRG2β/Q43L stimulates less ErbB4 tyrosine phosphorylation than does NRG2β. In addition, NRG2β stimulation of cell proliferation requires PI3K (phosphoinositide 3-kinase) activity and NRG2β stimulates greater Akt phosphorylation than does NRG2β/Q43L. Moreover, EGFR [EGF (epidermal growth factor) receptor] kinase activity (but not that of ErbB4) is critical for coupling ErbB4 to proliferation. Experiments utilizing ErbB4 splicing isoforms and mutants suggest that NRG2β and NRG2β/Q43L may differentially stimulate ErbB4 coupling to the transcriptional co-regulator YAP (Yes-associated protein). Finally, NRG2β/Q43L competitively antagonizes agonist stimulation of EGFR and ErbB2/ErbB3, indicating that NRG2β/Q43L is a pan-ErbB antagonist. Thus we postulate that NRG2β/Q43L and other antagonistic ligands stimulate ErbB tyrosine phosphorylation on a set of residues distinct from that stimulated by agonists, thus suggesting a novel mechanism of ErbB receptor regulation. Moreover, NRG2β/Q43L and related ligand-based antagonists establish a paradigm for the discovery of anti-ErbB therapeutics.
    Biochemical Journal 01/2012; 443(1):133-44. DOI:10.1042/BJ20110921 · 4.78 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Lethal toxin (LT) is a critical virulence factor of Bacillus anthracis and an important means by which this bacterium evades the host's immune system. In this study, we demonstrate that CD1d-expressing cells treated with LT have reduced CD1d-mediated antigen presentation. We earlier showed an important role for the mitogen-activated protein kinase extracellular signal-regulated kinase 1/2 (ERK1/2) in the regulation of CD1d-mediated antigen presentation, and we report here that LT impairs antigen presentation by CD1d in an ERK1/2-dependent manner. Similarly, LT and the ERK1/2 pathway-specific inhibitor U0126 caused a decrease in major histocompatibility complex (MHC) class II-mediated antigen presentation. Confocal microscopy analyses revealed altered intracellular distribution of CD1d and LAMP-1 in LT-treated cells, similar to the case for ERK1/2-inhibited cells. These results suggest that Bacillus anthracis has the ability to evade the host's innate immune system by reducing CD1d-mediated antigen presentation through targeting the ERK1/2 pathway.
    Infection and immunity 03/2010; 78(5):1859-63. DOI:10.1128/IAI.01307-09 · 4.16 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Statins are widely used as cholesterol-lowering agents that also decrease inflammation and target enzymes essential for prenylation, an important process in the activation and intracellular transport of proteins vital for a wide variety of cellular functions. Here, we report that statins impair a critical component of the innate immune response, CD1d-mediated Ag presentation. The addition of specific intermediates in the isoprenylation pathway reversed this effect, whereas specific targeting of enzymes responsible for prenylation mimicked the inhibitory effects of statins on Ag presentation by CD1d as well as MHC class II molecules. This study demonstrates the importance of isoprenylation in the regulation of Ag presentation and suggests a mechanism by which statins reduce inflammatory responses.
    The Journal of Immunology 05/2009; 182(8):4744-50. DOI:10.4049/jimmunol.0804311 · 5.36 Impact Factor
  • Source
    Richard M Gallo, David J Riese
    [Show abstract] [Hide abstract]
    ABSTRACT: Phosphorylation state specific antibodies are important reagents for characterizing protein phosphorylation and signaling. However, these antibodies require proper validation to determine that they do not cross-react with the unphosphorylated peptide or with other phosphoproteins. We have previously shown that phosphorylation of tyrosine1056 of ErbB4 is critical for it to inhibit colony formation on plastic by human tumor cell lines. Thus, an antibody directed against this site would be useful for studying ErbB4 signaling and coupling to biological responses. Here, we demonstrate that a commercially available antibody raised against a phosphopeptide corresponding to the carboxyl-terminal domain of the ErbB4 receptor tyrosine kinase fails to exhibit appropriate specificity. Thus, this antibody does not appear to be suitable for studying ErbB4 phosphorylation or signaling.
    Growth Factors 11/2007; 25(5):329-33. DOI:10.1080/08977190701804008 · 3.09 Impact Factor
  • Source
    David J Riese, Richard M Gallo, Jeffrey Settleman
    [Show abstract] [Hide abstract]
    ABSTRACT: Signaling by the Epidermal Growth Factor Receptor (EGFR) and related ErbB family receptor tyrosine kinases can be deregulated in human malignancies as the result of mutations in the genes that encode these receptors. The recent identification of EGFR mutations that correlate with sensitivity and resistance to EGFR tyrosine kinase inhibitors in lung and colon tumors has renewed interest in such activating mutations. Here we review current models for ligand stimulation of receptor dimerization and for activation of receptor signaling by receptor dimerization. In the context of these models, we discuss ErbB receptor mutations that affect ligand binding and those that cause constitutive receptor phosphorylation and signaling as a result of constitutive receptor dimerization. We discuss mutations in the cytoplasmic regions that affect enzymatic activity, substrate specificity and coupling to effectors and downstream signaling pathways. Finally, we discuss how emergent mechanisms of ErbB receptor mutational activation could impact the search for clinically relevant ErbB receptor mutations.
    BioEssays 06/2007; 29(6):558-65. DOI:10.1002/bies.20582 · 4.84 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We have previously demonstrated that the constitutively active Q646C mutant of the ErbB4 receptor tyrosine kinase inhibits colony formation by human prostate tumor cell lines. Here we use ErbB4 mutants to identify ErbB4 functions critical for inhibiting colony formation. A derivative of ErbB4 Q646 that lacks kinase activity fails to inhibit colony formation by prostate tumor cells. Likewise, an ErbB4 Q646C mutant in the context of the CT-b splicing isoform fails to inhibit colony formation. Mutation of tyrosine 1056 to phenylalanine abrogates inhibition of colony formation whereas an ErbB4 mutant that lacks all of the putative sites of tyrosine phosphorylation except for tyrosine 1056 still inhibits colony formation. Given that tyrosine 1056 is missing in the CT-b isoform, these results suggest that phosphorylation of tyrosine 1056 is critical for function. Indeed, an ErbB4 mutant that lacks kinase activity but has a glutamate phosphomimic residue substituted for tyrosine 1056 inhibits colony formation. Finally, 1-dimensional phosphopeptide mapping indicates that ErbB4 Q646C is phosphorylated on tyrosine 1056. These data suggest that phosphorylation of ErbB4 tyrosine 1056 is critical for coupling ErbB4 to prostate tumor suppression.
    Biochemical and Biophysical Research Communications 11/2006; 349(1):372-82. DOI:10.1016/j.bbrc.2006.08.055 · 2.28 Impact Factor
  • Source
    Jennifer L Gilmore, Richard M Gallo, David J Riese
    [Show abstract] [Hide abstract]
    ABSTRACT: The EGFR (epidermal growth factor receptor; ErbB1) is frequently the subject of genetic changes in human tumours which contribute to the malignant phenotype by altering EGFR signalling. Examples of such genetic changes include overexpression, extracellular domain deletions and point mutations, and small deletions in the tyrosine kinase domain. We hypothesized that a point mutation in one of the EGFR ligand-binding domains would increase the affinity of EGFR for NRG2beta (neuregulin-2beta), which is not a potent stimulus of signalling by EGFR-Wt (wild-type EGFR). This mutation would permit NRG2beta stimulation of EGFR signalling in settings in which NRG2beta does not normally do so. To test this hypothesis, we have generated and evaluated various EGFR alleles containing mutations at Val441 and Ser442. NRG2beta is a much more potent stimulus of the EGFR-S442F mutant than of EGFR-Wt. Furthermore, the affinity of NRG2beta for the EGFR-S442F mutant is greater than the affinity of NRG2beta for EGFR-Wt. Finally, the EGFR-S442F mutant constitutively suppresses apoptosis via phosphoinositide 3-kinase and Akt signalling but is not highly tyrosine phosphorylated in the absence of ligand. These results suggest that mutations in the EGFR ligand-binding domain in tumours may permit potent stimulation of EGFR signalling by ligands that are not normally potent EGFR agonists, thereby providing for a novel mechanism by which EGFR signalling may be deregulated. These results also suggest that novel EGFR mutations and signalling activities may be responsible for deregulated EGFR signalling in tumour cells.
    Biochemical Journal 06/2006; 396(1):79-88. DOI:10.1042/BJ20051687 · 4.78 Impact Factor
  • Stuart S Hobbs, Richard M Gallo, David J Riese
    [Show abstract] [Hide abstract]
    ABSTRACT: The Neuregulins (NRGs) are members of the epidermal growth factor (EGF) family of growth factors. EGF family members regulate the signaling of ErbB family receptor tyrosine kinases, including the epidermal growth factor receptor (EGFR/ErbB1), ErbB2/HER2/Neu, ErbB3/HER3 and ErbB4/HER4. We have previously demonstrated that the EGF family hormone NRG2beta is a potent ErbB4 agonist, whereas NRG2alpha is a weak ErbB4 agonist. We have also previously demonstrated that Phe45 of NRG2beta regulates the potency of NRG2beta. Here, we address the hypotheses that Phe45 regulates the potency of NRG2beta by regulating the affinity of NRG2beta for ErbB4. We demonstrate that Phe45 of NRG2beta indeed regulates the affinity of NRG2beta for ErbB4. Furthermore, a hydrophobic or uncharged amino acid side chain at residue 45 contributes to NRG2beta binding to ErbB4. These data indicate that Phe45 of NRG2beta may regulate the affinity of NRG2beta for ErbB4 by interacting with hydrophobic amino acids in ErbB4.
    Growth Factors 01/2006; 23(4):273-83. DOI:10.1080/08977190500199345 · 3.09 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The neuregulins (NRGs) are members of the epidermal growth factor (EGF) family of peptide growth factors. These hormones are agonists for the ErbB family of receptor tyrosine kinases, a family that includes the epidermal growth factor receptor (EGFR/ErbB1), ErbB2/Neu/HER2, ErbB3/HER3, and ErbB4/HER4. We recently observed that the EGF family hormone NRG2beta is a potent agonist for ErbB4. In contrast, NRG2alpha, a splicing isoform of the same gene that encodes NRG2beta, is a poor ErbB4 agonist. We hypothesized that carboxyl-terminal residues of NRG2beta are critical for stimulation of ErbB4 tyrosine phosphorylation and coupling to downstream signaling events. Here, we demonstrate that the substitution of a lysine residue for Phe45 in NRG2beta results in reduced ligand potency. We also demonstrate that substitution of a phenylalanine for Lys45 in NRG2alpha results in increased ligand potency. Finally, analyses of the gain-of-function NRG2alpha Chg5 mutant demonstrate that Gln43, Met47, Asn49, and Phe50 regulate ligand efficacy. Thus, these data indicate that carboxyl-terminal residues of NRG2beta are critical for activation of ErbB4 signaling. Moreover, these NRG2alpha and NRG2beta mutants reveal new insights into models for ligand-induced ErbB family receptor tyrosine phosphorylation and coupling to downstream signaling events.
    Oncogene 02/2004; 23(4):883-93. DOI:10.1038/sj.onc.1207250 · 8.56 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: ErbB4 (HER4) is a member of the ErbB family of receptor tyrosine kinases, a family that also includes the Epidermal Growth Factor Receptor (EGFR/ErbB1/HER1), Neu/ErbB2/HER2, and ErbB3/HER3. Several groups have hypothesized that signal transduction by the ErbB4 receptor tyrosine kinase is coupled to differentiation, growth arrest, and tumor suppression in mammary and prostate epithelial cells. In this report we demonstrate that a constitutively active ErbB4 mutant inhibits the formation of drug-resistant colonies by the DU-145 and PC-3 human prostate tumor cell lines. This is consistent with our hypothesis that ErbB4 signaling is growth inhibitory and may be coupled to tumor suppression in prostate cells.
    Cancer Letters 04/2003; 192(1):67-74. DOI:10.1016/S0304-3835(02)00690-0 · 5.02 Impact Factor

Publication Stats

198 Citations
57.93 Total Impact Points

Institutions

  • 2013
    • Indiana University-Purdue University School of Medicine
      Indianapolis, Indiana, United States
  • 2010–2013
    • Indiana University-Purdue University Indianapolis
      • Department of Microbiology and Immunology
      Indianapolis, Indiana, United States
  • 2006–2007
    • Purdue University
      • Purdue University Center for Cancer Research
      West Lafayette, Indiana, United States