Sidney L Shaw

Indiana University Bloomington, Bloomington, Indiana, United States

Are you Sidney L Shaw?

Claim your profile

Publications (54)388.17 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Ran is a small GTP binding protein that was originally identified as a regulator of nucleocytoplasmic transport [1] and subsequently found to be important for spindle formation [2-5]. In mitosis, a gradient of Ran-GTP emanates from chromatin and diminishes toward spindle poles [6]. Ran-GTP promotes spindle self-organization through the release of importin-bound spindle assembly factors (SAFs), which stimulate microtubule (MT) nucleation and organization and regulate MT dynamics [7-9]. Although many SAFs are non-motile MT-associated proteins, such as NuMA, TPX2, and HURP [7, 10-12], Ran also controls motor proteins, including Kid and HSET/XCTK2 [13, 14]. The Kinesin-14 XCKT2 is important for spindle assembly and pole organization [15-20], and Ran-GTP is proposed to promote XCKT2 MT crosslinking activity by releasing importin α/β from a bipartite nuclear localization signal (NLS) located in the tail domain [14]. Here, we show that the Ran-GTP gradient spatially regulates XCTK2 within the spindle. A flattened Ran-GTP gradient blocked the ability of excess XCTK2 to stimulate bipolar spindle assembly and resulted in XCTK2-mediated bundling of free MTs. These effects required the XCTK2 tail, which promoted the motility of XCTK2 within the spindle independent of the Ran-GTP gradient. In addition, the turnover kinetics of XCTK2 were spatially controlled: they were faster near the poles relative to the chromatin, but not with a mutant XCTK2 that cannot bind to importin α/β. Our results support a model in which the Ran-GTP gradient spatially coordinates motor localization with motility to ensure efficient spindle formation. Copyright © 2015 Elsevier Ltd. All rights reserved.
    Current biology: CB 05/2015; DOI:10.1016/j.cub.2015.04.015 · 9.92 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The relative localization patterns of class B penicillin-binding proteins Pbp2x and Pbp2b were used as positional indicators of septal and peripheral (side-wall-like) peptidoglycan (PG) synthesis, respectively, in the midcell regions of Streptococcus pneumoniae cells at different stages of division. We confirm that Pbp2x and Pbp2b are essential in the strain D39 genetic background, which differs from that of laboratory strains. We show that Pbp2b, like Pbp2x and class A Pbp1a, follows a different localization pattern than FtsZ and remains at division septa after FtsZ reappears at the equators of daughter cells. Pulse-experiments with fluorescent D-amino acids (FDAAs) were performed in wild-type cells and in cells in which Pbp2x activity was preferentially inhibited by methicillin or Pbp2x amount was depleted. These experiments show that Pbp2x activity separates from that of other PBPs to the centers of constricting septa in mid-to-late divisional cells resolved by high-resolution 3D-SIM microscopy. Dual-protein and protein-fluorescent vancomycin 2D and 3D-SIM immunofluorescence microscopy (IFM) of cells at different division stages corroborate that Pbp2x separates to the centers of septa surrounded by an adjacent constricting ring containing Pbp2b, Pbp1a, and regulators, StkP and MreC. The separate localization of Pbp2x suggests distinctive roles in completing septal PG synthesis and remodeling.
    Molecular Microbiology 08/2014; 94(1). DOI:10.1111/mmi.12745 · 5.03 Impact Factor
  • Sidney L Shaw
    [Show abstract] [Hide abstract]
    ABSTRACT: The interphase microtubule arrays in flowering plant cells assemble at the cell cortex into patterns that affect cellular morphogenesis. A decade of live cell imaging studies has provided significant information about the in vivo properties of the microtubule polymers. Efforts to extrapolate individual properties to larger roles in organizing or patterning the microtubule array have produced models focused on self-organization and local levels of biological control. Recent studies looking at cortical microtubule arrays as they transition from an existing pattern to a new pattern have re-emerged as a testbed for examining these models and the molecular hypotheses underpinning them. The evidence suggests that microtubule patterning is locally controlled on the scale of a cell face, using or circumventing self-organizating properties as necessary.
    Current opinion in plant biology 12/2013; 16(6):693-7. DOI:10.1016/j.pbi.2013.09.006 · 9.39 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Proper spindle assembly and chromosome segregation rely on precise microtubule dynamics, which are governed in part by the kinesin-13 MCAK. MCAK microtubule depolymerization activity is inhibited by Aurora B-dependent phosphorylation, but the mechanism of this inhibition is not understood. Here, we develop the first Förster resonance energy transfer (FRET)-based biosensor for MCAK and show that MCAK in solution exists in a closed conformation mediated by an interaction between the C-terminal domain (CT) and the neck. Using fluorescence lifetime imaging (FLIM) we show that MCAK bound to microtubule ends is closed relative to MCAK associated with the microtubule lattice. Aurora B phosphorylation at S196 in the neck opens MCAK conformation and diminishes the interaction between the CT and the neck. Using FLIM and TIRF imaging, we find that changes in MCAK conformation are associated with a decrease in MCAK affinity for the microtubule. Unlike motile kinesins, which are open when doing work, the high-affinity binding state for microtubule-depolymerizing kinesins is in a closed conformation. Phosphorylation switches MCAK conformation, which inhibits its ability to interact with microtubules and reduces its microtubule depolymerization activity. This work shows that the conformational model proposed for regulating kinesin activity is not universal and that microtubule-depolymerizing kinesins utilize a distinct conformational mode to regulate affinity for the microtubule, thus controlling their catalytic efficiency. Furthermore, our work provides a mechanism by which the robust microtubule depolymerization activity of kinesin-13s can be rapidly modulated to control cellular microtubule dynamics.
    Current biology: CB 11/2013; 23(24). DOI:10.1016/j.cub.2013.10.054 · 9.92 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Bacterial cell shapes are manifestations of programs carried out by multi-protein machines that synthesize and remodel the resilient peptidoglycan mesh and other polymers surrounding cells. GpsB protein is conserved in low-GC Gram-positive bacteria and is not essential in rod-shaped Bacillus subtilis, where it plays a role in shuttling penicillin binding proteins (PBPs) between septal and side-wall sites of peptidoglycan (PG) synthesis. In contrast, we report here that GpsB is essential in ellipsoid-shaped, ovococcal Streptococcus pneumoniae (pneumococcus), and depletion of GpsB leads to formation of elongated, enlarged cells containing unsegregated nucleoids and multiple, unconstricted rings of new peptidoglycan (PG), and eventual lysis. These phenotypes are similar to those caused by selective inhibition of Pbp2x by methicillin that prevents septal PG synthesis. Dual-protein 2D and 3D-SIM (structured illumination) immunofluorescence microscopy (IFM) showed that GpsB and FtsZ have overlapping, but not identical, patterns of localization during cell division and that multiple, unconstricted rings of division proteins FtsZ, Pbp2x, Pbp1a, and MreC are in elongated cells depleted of GpsB. These patterns suggest that GpsB, like Pbp2x, mediates septal ring closure. This first dual-protein 3D-SIM IFM analysis also revealed separate positioning of Pbp2x and Pbp1a in constricting septa, consistent with two separable PG synthesis machines.
    Molecular Microbiology 09/2013; DOI:10.1111/mmi.12408 · 5.03 Impact Factor
  • Sidney L Shaw, David W Ehrhardt
    [Show abstract] [Hide abstract]
    ABSTRACT: The advent of fluorescent proteins and access to modern imaging technologies have dramatically accelerated the pace of discovery in plant cell biology. Remarkable new insights into such diverse areas as plant pathogenesis, cytoskeletal dynamics, sugar transport, cell wall synthesis, secretory control, and hormone signaling have come from careful examination of living cells using advanced optical probes. New technologies, both commercially available and on the horizon, promise a continued march toward more quantitative methods for imaging and for extending the optical exploration of biological structure and activity to molecular scales. In this review, we lay out fundamental issues in imaging plant specimens and look ahead to several technological innovations in molecular tools, instrumentation, imaging methods, and specimen handling that show promise for shaping the coming era of plant cell biology. Expected final online publication date for the Annual Review of Plant Biology Volume 64 is April 29, 2013. Please see http://www.annualreviews.org/catalog/pubdates.aspx for revised estimates.
    Annual Review of Plant Biology 03/2013; DOI:10.1146/annurev-arplant-042110-103843 · 18.90 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The acentriolar cortical microtubule arrays in dark-grown hypocotyl cells organize into a transverse coaligned pattern that is critical for axial plant growth. In light-grown Arabidopsis thaliana seedlings, the cortical array on the outer (periclinal) cell face creates a variety of array patterns with a significant bias (>3:1) for microtubules polymerizing edge-ward and into the side (anticlinal) faces of the cell. To study the mechanisms required for creating the transverse coalignment, we developed a dual-hormone protocol that synchronously induces ∼80% of the light-grown hypocotyl cells to form transverse arrays over a 2-h period. Repatterning occurred in two phases, beginning with an initial 30 to 40% decrease in polymerizing plus ends prior to visible changes in the array pattern. Transverse organization initiated at the cell's midzone by 45 min after induction and progressed bidirectionally toward the apical and basal ends of the cell. Reorganization corrected the edge-ward bias in polymerization and proceeded without transiting through an obligate intermediate pattern. Quantitative comparisons of uninduced and induced microtubule arrays showed a limited deconstruction of the initial periclinal array followed by a progressive array reorganization to transverse coordinated between the anticlinal and periclinal cell faces.
    The Plant Cell 02/2013; DOI:10.1105/tpc.112.107326 · 9.58 Impact Factor
  • Sidney L Shaw, Edward H Hinchcliffe
    [Show abstract] [Hide abstract]
    ABSTRACT: Computers dominate image capture and analysis in modern light microscopy. The output of an imaging experiment is a binary coded file, called an image file, which contains the spatial, temporal and intensity information present in the sample. Understanding what comprises an image file, and how these files are generated is necessary in order to optimize the use of the digital light microscope. In this chapter, we discuss image file formats, and the various components of these files, such as bit-depth, sampling rate, color theory, and compression, from the perspective of the non-computer scientist. We also discuss the problem of proprietary file formats, and how these often are incompatible with certain types of imaging software. We present several solutions to this issue. Finally, we present the use of digital movie formats, compression routines, and provide some real world examples for optimizing the generation of digital movies.
    Methods in cell biology 01/2013; 114:317-36. DOI:10.1016/B978-0-12-407761-4.00013-0 · 1.44 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Bacterial flagella are highly conserved molecular machines that have been extensively studied for assembly, function, and gene regulation. Less studied is how and why bacteria differ based on the number and arrangement of the flagella they synthesize. Here we explore the cell biology of peritrichous flagella in the model bacterium Bacillus subtilis by fluorescently labeling flagellar basal bodies, hooks, and filaments. We find that the average B. subtilis cell assembles approximately 26 flagellar basal bodies and we show that basal body number is controlled by the protein of unknown function SwrA. Basal bodies are assembled rapidly (< 5 minutes) but the assembly of flagella capable of supporting motility (> 40 minutes) is rate limited by filament polymerization. We find that basal bodies are not positioned randomly on the cell surface. Rather, basal bodies occupy a grid-like pattern organized symmetrically around the midcell and that flagella are discouraged at the poles. Basal body position is genetically determined by FlhF and FlhG homologs to control spatial patterning differently from what is seen in bacteria with polar flagella. Finally, spatial control of flagella in B. subtilis seems more relevant to the inheritance of flagella in individual cells than the motile behavior of populations.
    Molecular Microbiology 11/2012; DOI:10.1111/mmi.12103 · 5.03 Impact Factor
  • Source
    Sidney L Shaw
    Proceedings of the National Academy of Sciences 07/2012; 109(31):12274-5. DOI:10.1073/pnas.1209593109 · 9.81 Impact Factor
  • Source
    Jessica R Lucas, Sidney L Shaw
    [Show abstract] [Hide abstract]
    ABSTRACT: We investigated the role of the Arabidopsis microtubule associated proteins 65-1 and 65-2 (MAP65-1 and MAP65-2) in the control of axial root growth. Transgenic plants expressing fluorescent fusion proteins from native promoters indicated exactly overlapping accumulation of MAP65-1 and MAP65-2 in the root tip and elongation zone. Nearly identical protein accumulation patterns were observed when MAP65-1 and MAP65-2 were expressed behind a constitutive CaMV 35S promoter, suggesting a level of post-transcriptional control that restricts these proteins to rapidly growing portions of the root. Co-expression of MAP65-1 and MAP65-2 fusion proteins showed precise co-localization to interphase and cytokinetic microtubule arrays. In interphase root tip cells, the fluorescent protein fusions labeled microtubules that were organized into a variety of different array patterns. In the rapidly growing cells of the root elongation zone, we found MAP65-1 and MAP65-2 co-localized exclusively to the lateral faces of cells that were axially extending. Genetic analysis showed that MAP65-1 and MAP65-2 are coordinately required for proper root elongation. Double map65-1-1 map65-2-2 mutant roots from dark-grown plants contained 50% fewer cells per file than wild-type roots, but we found no evidence that cytokinesis was disrupted. We additionally discovered that cell length was significantly shorter in the mature regions of the root beyond the zone where MAP65-1 and MAP65-2 accumulated. Our data indicate that MAP65-1 and MAP65-2 play a critical role in root growth by promoting cell proliferation and axial extension.
    The Plant Journal 03/2012; 71(3):454-63. DOI:10.1111/j.1365-313X.2012.05002.x · 6.82 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Microtubule polymers typically function through their collective organization into a patterned array. The formation of the pattern, whether it is a relatively simple astral array or a highly complex mitotic spindle, relies on controlled microtubule nucleation and the basal dynamics parameters governing polymer growth and shortening. We have investigated the interaction between the microtubule nucleation and dynamics parameters, using macroscopic Monte Carlo simulations, to determine how these parameters contribute to the underlying microtubule array morphology (i.e. polymer density and length distribution). In addition to the well-characterized steady state achieved between free tubulin subunits and microtubule polymer, we propose that microtubule nucleation and extinction constitute a second, interdependent steady state process. Our simulation studies show that the magnitude of both nucleation and extinction additively impacts the final steady state free subunit concentration. We systematically varied individual microtubule dynamics parameters to survey the effects on array morphology and find specific sensitivity to perturbations of catastrophe frequency. Altering the cellular context for the microtubule array, we find that nucleation template number plays a defining role in shaping the microtubule length distribution and polymer density.
    Computational biology and chemistry 10/2011; 35(5):269-81. DOI:10.1016/j.compbiolchem.2011.06.002 · 1.60 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The mitotic spindle is a macromolecular structure utilized to properly align and segregate sister chromatids to two daughter cells. During mitosis, the spindle maintains a constant length, even though the spindle microtubules (MTs) are constantly undergoing polymerization and depolymerization [1]. Members of the kinesin-8 family are important for the regulation of spindle length and for chromosome positioning [2-9]. Kinesin-8 proteins are length-specific, plus-end-directed motors that are proposed to be either MT depolymerases [3, 4, 8, 10, 11] or MT capping proteins [12]. How Kif18A uses its destabilization activity to control spindle morphology is not known. We found that Kif18A controls spindle length independently of its role in chromosome positioning. The ability of Kif18A to control spindle length is mediated by an ATP-independent MT binding site at the C-terminal end of the Kif18A tail that has a strong affinity for MTs in vitro and in cells. We used computational modeling to ask how modulating the motility or binding properties of Kif18A would affect its activity. Our modeling predicts that both fast motility and a low off rate from the MT end are important for Kif18A function. In addition, our studies provide new insight into how depolymerizing and capping enzymes can lead to MT destabilization.
    Current biology: CB 08/2011; 21(17):1500-6. DOI:10.1016/j.cub.2011.08.005 · 9.92 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The Arabidopsis thaliana MAP65-1 and MAP65-2 genes are members of the larger eukaryotic MAP65/ASE1/PRC gene family of microtubule-associated proteins. We created fluorescent protein fusions driven by native promoters that colocalized MAP65-1 and MAP65-2 to a subset of interphase microtubule bundles in all epidermal hypocotyl cells. MAP65-1 and MAP65-2 labeling was highly dynamic within microtubule bundles, showing episodes of linear extension and retraction coincident with microtubule growth and shortening. Dynamic colocalization of MAP65-1/2 with polymerizing microtubules provides in vivo evidence that plant cortical microtubules bundle through a microtubule-microtubule templating mechanism. Analysis of etiolated hypocotyl length in map65-1 and map65-2 mutants revealed a critical role for MAP65-2 in modulating axial cell growth. Double map65-1 map65-2 mutants showed significant growth retardation with no obvious cell swelling, twisting, or morphological defects. Surprisingly, interphase microtubules formed coaligned arrays transverse to the plant growth axis in dark-grown and GA(4)-treated light-grown map65-1 map65-2 mutant plants. We conclude that MAP65-1 and MAP65-2 play a critical role in the microtubule-dependent mechanism for specifying axial cell growth in the expanding hypocotyl, independent of any mechanical role in microtubule array organization.
    The Plant Cell 05/2011; 23(5):1889-903. DOI:10.1105/tpc.111.084970 · 9.58 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The role of centrosomes and centrioles during mitotic spindle assembly in vertebrates remains controversial. In cell-free extracts and experimentally derived acentrosomal cells, randomly oriented microtubules (MTs) self-organize around mitotic chromosomes and assemble anastral spindles. However, vertebrate somatic cells normally assemble a connected pair of polarized, astral MT arrays--termed an amphiaster ("a star on both sides")--that is formed by the splitting and separation of the microtubule-organizing center (MTOC) well before nuclear envelope breakdown (NEB). Whether amphiaster formation requires splitting of duplicated centrosomes is not known. We found that when centrosomes were removed from living vertebrate cells early in their cell cycle, an acentriolar MTOC reassembled, and, prior to NEB, a functional amphiastral spindle formed. Cytoplasmic dynein, dynactin, and pericentrin are all recruited to the interphase aMTOC, and the activity of kinesin-5 is needed for amphiaster formation. Mitosis proceeded on time and these karyoplasts divided in two. However, ~35% of aMTOCs failed to split and separate before NEB, and these entered mitosis with persistent monastral spindles. Chromatin-associated RAN-GTP--the small GTPase Ran in its GTP bound state--could not restore bipolarity to monastral spindles, and these cells exited mitosis as single daughters. Our data reveal the novel finding that MTOC separation and amphiaster formation does not absolutely require the centrosome, but, in its absence, the fidelity of bipolar spindle assembly is highly compromised.
    Current biology: CB 03/2011; 21(7):598-605. DOI:10.1016/j.cub.2011.02.049 · 9.92 Impact Factor
  • Sidney L Shaw, Jessica Lucas
    [Show abstract] [Hide abstract]
    ABSTRACT: We tested the general hypothesis that bundling stabilizes the dynamic properties of the constituent microtubules (MTs) in vivo. We quantified the assembly dynamics of bundled and unbundled MTs in the interphase cortical array of Arabidopsis hypocotyl cells using high dynamic range spinning disk confocal microscopy. We find no evidence that bundled MTs are stabilized against depolymerization through changes to their dynamic properties. Our observations of MT plus and minus ends indicate that both bundled and unbundled polymers undergo persistent treadmilling in this system. We conclude that the temporal persistence of MT subassemblies in the Arabidopsis cortical array is largely dependent upon recruitment or nucleation of new treadmilling MTs and not on polymer stabilization. Monte Carlo simulations suggest that small differences discovered in the dynamic properties between bundled and unbundled polymers would produce relatively small macroscopic effects on the larger MT array.
    Cytoskeleton 01/2011; 68(1):56-67. DOI:10.1002/cm.20495 · 3.01 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We generalize the Dogterom-Leibler model for microtubule dynamics (Dogterom and Leibler in Phys Rev Lett 70(9):1347-1350, 1993) to the case where the rates of elongation as well as the lifetimes of the elongating shortening phases are a function of GTP-tubulin concentration. We analyze also the effect of nucleation rate in the form of a damping term which leads to new steady-states. For this model, we study existence and stability of steady states satisfying the boundary conditions at x=0. Our stability analysis introduces numerical and analytical Evans function computations as a new mathematical tool in the study of microtubule dynamics.
    Journal of Mathematical Biology 11/2010; 63(3):459-92. DOI:10.1007/s00285-010-0379-z · 2.39 Impact Factor
  • Claire E Walczak, Sidney L Shaw
    [Show abstract] [Hide abstract]
    ABSTRACT: Microtubules assemble into arrays of bundled filaments that are critical for multiple steps in cell division, including anaphase and cytokinesis. Recent structural and functional studies, including two papers in this issue of Cell (Bieling et al., 2010; Subramanian et al., 2010), demonstrate how the MAP65 protein PRC1 crosslinks microtubules and cooperates with kinesin motors to control the dynamics and size of bundled regions.
    Cell 08/2010; 142(3):364-7. DOI:10.1016/j.cell.2010.07.023 · 33.12 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: While the popularity of MATLAB for scientific and engineering applications is unabated, its poor performance compared to traditional languages, such as Fortran or even C, for a general class of problems continues to impede its deployment in full-scale simulations and data analysis. To ameliorate performance, we have been developing a MATLAB and Octave compiler that leverages the interpreter to implement some of the optimizations as concrete partial evaluations. Specifically, this paper describes constant propagation and type inference, using a high-level tree-transformation tool that has built-in support for solving dataflow problems. The approach allows propagation and folding of constants in cases that would be impractically difficult otherwise. The idea, when extended to infer variable types, provides a natural way to disambiguate types at compile time while leaving the fallback code in place for run-time evaluation. Experimental evaluation on pieces of real MATLAB code demonstrates the effectiveness of the approach.
    High Performance Computing (HiPC), 2009 International Conference on; 01/2010
  • Claire E Walczak, Rania S Rizk, Sidney L Shaw
    [Show abstract] [Hide abstract]
    ABSTRACT: Microtubules (MTs) are highly dynamic polymers that serve as tracks for vesicular movement during interphase and as structural components of the mitotic spindle, which is used to segregate the genetic material. MT dynamics are highly regulated wherein MTs turnover differentially between interphase and mitosis. Within the mitotic spindle, there are distinct classes of MTs with different dynamic properties. To understand how cellular proteins regulate the dynamics of MTs, it is necessary to have methods to assess their turnover properties. In this chapter we present approaches to assess MT dynamics in cultured mammalian cells using fluorescence redistribution after photobleaching. We include a discussion of cell culture and imaging conditions that maintain cell viability. We also provide an extensive discussion of both data collection and analysis that are utilized to estimate the turnover dynamics of MTs.
    Methods in cell biology 01/2010; 97:35-52. DOI:10.1016/S0091-679X(10)97003-9 · 1.44 Impact Factor

Publication Stats

2k Citations
388.17 Total Impact Points

Institutions

  • 2006–2015
    • Indiana University Bloomington
      • Department of Biology
      Bloomington, Indiana, United States
  • 1996–2007
    • University of North Carolina at Chapel Hill
      • Department of Biology
      Chapel Hill, NC, United States
  • 2004
    • Harvard University
      • Department of Organismic and Evolutionary Biology
      Cambridge, MA, United States
  • 1998–2004
    • Stanford University
      • Department of Biology
      Palo Alto, California, United States
    • Duke University Medical Center
      • Department of Cell Biology
      Durham, NC, United States