Norman Murray

University of Toronto, Toronto, Ontario, Canada

Are you Norman Murray?

Claim your profile

Publications (70)431.92 Total impact

  • Source
    Snezana Prodan, Norman Murray
    [Show abstract] [Hide abstract]
    ABSTRACT: In this work we extend our dynamical study of Ultra Compact X-ray Binaries (UCXB) 4U 1820-30 from Prodan and Murray 2012 to three more UCXBs in globular clusters: 4U 1850-087, 4U 0513-40 and M15 X-2. These three UCXBs have orbital periods < 20 mins. Two of them, 4U 1850-087 and 4U 0513-40, have suspected luminosity variations of order of ~ 1yr. There is insufficient observational data to make any statements regarding the long periodicity in the light curve of M15 X-2 at this point. The properties of these three systems are quite similar to 4U 1820-30, which prompt us to model their dynamics in the same manner. As in the case of 4U 1820-30, we interpret the suspected long periods as the period of small oscillations around a stable fixed point in the Kozai resonance. We provide a lower limit on the tidal dissipation factor Q which is in agreement with results obtained for the case of 4U 1820-30.
    11/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: Gas inflows and outflows regulate star formation in galaxies. Probing these processes is one of the central motivations for spectroscopic measurements of the circum-galactic medium. We use high-resolution cosmological zoom-in simulations from the FIRE project to make predictions for the covering fractions of neutral hydrogen around galaxies at z=2-4. These simulations resolve the interstellar medium of galaxies and explicitly implement a comprehensive set of stellar feedback mechanisms. Our simulation sample consists of 16 main halos covering the mass range M_h~2x10^9-8x10^12 Msun at z=2, including 12 halos in the mass range M_h~10^11-10^12 Msun corresponding to Lyman break galaxies (LBGs). We process our simulations with a ray tracing method to compute the ionization state of the gas. Galactic winds increase the HI covering fractions in galaxy halos by direct ejection of cool gas from galaxies and through interactions with gas inflowing from the intergalactic medium. Our simulations predict HI covering fractions for Lyman limit systems (LLSs) consistent with measurements around z~2-2.5 LBGs; these covering fractions are a factor ~2 higher than our previous calculations without galactic winds. The fractions of HI absorbers arising in inflows and in outflows are on average ~50% but exhibit significant time variability. For our most massive halos, we find a factor ~3 deficit in the LLS covering fraction relative to what is measured around quasars at z~2, suggesting that the presence of a quasar may affect the properties of halo gas on ~100 kpc scales. The predicted covering fractions peak at M_h~10^11-10^12 Msun, near the peak of the star formation efficiency in dark matter halos. In our simulations, star formation and galactic outflows are highly time dependent; HI covering fractions are also time variable but less so because they represent averages over large areas.
    09/2014;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: It is typically assumed that radiation pressure driven winds are accelerated to an asymptotic velocity of v_inf ~ v_esc, where v_esc is the escape velocity from the central source. We note that this is not the case for dusty shells. Instead, if the shell is initially optically-thick to the UV emission from the source of luminosity L, then there is a significant boost in v_inf that reflects the integral of the momentum absorbed by the shell as it is accelerated. For shells reaching a generalized Eddington limit, we show that v_inf ~ (4 R_UV L / M_sh c)^{1/2}, in both point-mass and isothermal-sphere potentials, where R_UV is the radius where the shell becomes optically-thin to UV photons, and M_sh is the mass of the shell. The asymptotic velocity significantly exceeds v_esc for typical parameters, and can explain the ~1000-2000 km/s outflows observed from rapidly star-forming galaxies and active galactic nuclei if their geometry is shell-like and if the surrounding halo has low gas density. Similarly fast shells from massive stars can be accelerated on ~ few -1000 yr timescales. We further consider the dynamics of shells that sweep up a dense circumstellar or circumgalactic medium. We calculate the "momentum ratio" Mdot v / (L/c) in the shell limit and show that it can only significantly exceed ~2 if the effective optical depth of the shell to re-radiated FIR photons is much larger than unity. We discuss simple prescriptions for the properties of galactic outflows for use in large-scale cosmological simulations. We also briefly discuss applications to the dusty ejection episodes of massive stars, the disruption of giant molecular clouds, and AGN.
    06/2014;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The star formation rate (SFR) in the Central Molecular Zone (CMZ, i.e. the central 500 pc) of the Milky Way is lower by a factor of ≥10 than expected for the substantial amount of dense gas it contains, which challenges current star formation theories. In this paper, we quantify which physical mechanisms could be responsible. On scales larger than the disc scaleheight, the low SFR is found to be consistent with episodic star formation due to secular instabilities or possibly variations of the gas inflow along the Galactic bar. The CMZ is marginally Toomre-stable when including gas and stars, but highly Toomre-stable when only accounting for the gas, indicating a low condensation rate of self-gravitating clouds. On small scales, we find that the SFR in the CMZ may be caused by an elevated critical density for star formation due to the high turbulent pressure. The existence of a universal density threshold for star formation is ruled out. The H I–H2 phase transition of hydrogen, the tidal field, a possible underproduction of massive stars due to a bottom-heavy initial mass function, magnetic fields, and cosmic ray or radiation pressure feedback also cannot individually explain the low SFR. We propose a self-consistent cycle of star formation in the CMZ, in which the effects of several different processes combine to inhibit star formation. The rate-limiting factor is the slow evolution of the gas towards collapse – once star formation is initiated it proceeds at a normal rate. The ubiquity of star formation inhibitors suggests that a lowered central SFR should be a common phenomenon in other galaxies. We discuss the implications for galactic-scale star formation and supermassive black hole growth, and relate our results to the star formation conditions in other extreme environments.
    Monthly Notices of the Royal Astronomical Society 06/2014; 440(4):3370. · 5.52 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Galactic superwinds may be driven by very hot outflows generated by overlapping supernovae within the host galaxy, and the cold gas seen in absorption may be accelerated by the ram pressure of this hot wind. We use the Chevalier & Clegg (CC85) wind model and the observed correlation between X-ray luminosities of galaxies and their SFRs to constrain the mass loss rates (\dot{M}_hot) across a wide range of star formation rates (SFRs), from dwarf starbursts to ultra-luminous infrared galaxies. We show that for fixed thermalization efficiency and mass loading rate, the X-ray luminosity of the hot wind scales as L_X ~ SFR^2, significantly steeper than is observed for star-forming galaxies: L_X ~ SFR. Using this difference we constrain the mass-loading and thermalization efficiency of hot galactic winds. For reasonable values of the thermalization efficiency (<~ 1) and for SFR >~ 10 M_sun/yr we find that \dot{M}_hot/SFR <~ 1, significantly lower than required by integrated constraints on the efficiency of stellar feedback in galaxies, and potentially too low to explain observations of winds from rapidly star-forming galaxies. In addition, we highlight the fact that heavily mass-loaded winds cannot be described by the adiabatic CC85 model because they become strongly radiative.
    10/2013; 784(2).
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: White dwarf-white dwarf (WD-WD) mergers may lead to type Ia supernovae events. Thompson (2011) suggested that many such binaries are produced in hierarchical triple systems. The tertiary induces eccentricity oscillations in the inner binary via the Kozai-Lidov mechanism, driving the binary to high eccentricities, and significantly reducing the gravitational wave merger timescale (T_GW) over a broad range of parameter space. Here, we investigate the role of tidal forces in these systems. We show that tidal effects are important in the regime of moderately high initial relative inclination between the inner binary and the outer tertiary. For 85 < i_0 < 90 degrees (prograde) and 97 < i_0 < 102 degrees (retrograde), tides combine with GW radiation to dramatically decrease T_GW. In the regime of high inclinations between 91 < i_0 < 96 degrees, the inner binary likely suffers a direct collision, as in the work of Katz & Dong (2012) and tidal effects do not play an important role.
    05/2013;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Mapping Mg II resonance emission scattered by galactic winds offers a means to determine the spatial extent and density of the warm outflow. Using Keck/LRIS spectroscopy, we have resolved scattered Mg II emission to the east of 32016857, a star-forming galaxy at z =0.9392 with an outflow. The Mg II emission from this galaxy exhibits a P-Cygni profile, extends further than both the continuum and [O II] emission along the eastern side of the slit, and has a constant Doppler shift along the slit which does not follow the velocity gradient of the nebular [O II] emission. Using the Sobolev approximation, we derive the density of Mg+ ions at a radius of 12 to 18 kpc in the outflow. We model the ionization correction and find that much of the outflowing Mg is in Mg++. We estimate that the total mass flux could be as large as 330 - 500 solar masses per year, with the largest uncertainties coming from the depletion of Mg onto grains and the clumpiness of the warm outflow. We show that confining the warm clouds with a hot wind reduces the estimated mass flux of the warm outflow and indicates amass-loading factor near unity in the warm phase alone. Based on the high blue luminosities that distinguish 32016857 and TKRS 4389, described by Rubin et al. 2011, from other galaxies with P-Cygni emission, we suggest that, as sensitivity to diffuse emission improves, scattering halos may prove to be a generic property of star-forming galaxies at intermediate redshifts.
    The Astrophysical Journal 04/2013; 770(1). · 6.73 Impact Factor
  • Norman Murray
    [Show abstract] [Hide abstract]
    ABSTRACT: The low stellar and gas mass fractions, low galaxy-wide star formation rates (relative to galactic dynamical times) and observations of rapid outflows from galaxies, all suggest that stars and active galactic nuclei violently alter the state of the interstellar and even inter-halo gas in galaxies. I argue that the low galaxy wide star formation rates are not the result of turbulent suppression of star formation on small scale, but rather the result of a balance between dynamical pressure and the force (or rate of momentum deposition) provided by stellar feedback, either in the form of radiation pressure or by supernovae. Galaxy scale winds can also be driven by feedback, either from stars or active galactic nuclei, although the exact mechanisms involved are still not well determined.
    Proceedings of the International Astronomical Union 03/2013; 8(S292):343-350.
  • [Show abstract] [Hide abstract]
    ABSTRACT: We consider the effects of different star formation criteria on galactic scales, in high-resolution simulations with explicitly resolved GMCs and stellar feedback. We compare: (1) a self-gravity criterion (based on the local virial parameter and the assumption that self-gravitating gas collapses to high density in a free-fall time), (2) a fixed density threshold, (3) a molecular-gas law, (4) a temperature threshold, (5) a Jeans-instability requirement, (6) a criteria that cooling times be shorter than dynamical times, and (7) a convergent-flow criterion. We consider these both MW-like and high-density (starburst) galaxies. With feedback present, all models produce identical integrated star formation rates (SFRs), in agreement with the Kennicutt relation. Without feedback all produce orders-of-magnitude excessive SFRs. This is totally dependent on feedback and independent of the SF law. However, the spatial and density distribution of SF depend strongly on the SF criteria. Because cooling rates are generally fast and gas is turbulent, criteria (4)-(7) are 'weak' and spread SF uniformly over the disk (above densities n~0.01-0.1 cm^-3). A molecular criterion (3) localizes to higher densities, but still a wide range; for Z Z_solar, it is similar to a density threshold at n~1 cm^-3 (well below mean densities in the MW center or starbursts). Fixed density thresholds (2) can always select the highest densities, but must be adjusted for simulation resolution and galaxy properties; the same threshold that works in a MW-like simulation will select nearly all gas in a starburst. Binding criteria (1) tend to adaptively select the largest over-densities, independent of galaxy model or resolution, and automatically predict clustered SF. We argue that this SF model is most physically-motivated and presents significant numerical advantages in large-dynamic range simulations.
    Monthly Notices of the Royal Astronomical Society 03/2013; 432(4). · 5.52 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The conversion of gas into stars is a fundamental process in astrophysics and cosmology. Stars are known to form from the gravitational collapse of dense clumps in interstellar molecular clouds, and it has been proposed that the resulting star formation rate is proportional to either the amount of mass above a threshold gas surface density, or the gas volume density. These star-formation prescriptions appear to hold in nearby molecular clouds in our Milky Way Galaxy's disk as well as in distant galaxies where the star formation rates are often much larger. The inner 500 pc of our Galaxy, the Central Molecular Zone (CMZ), contains the largest concentration of dense, high-surface density molecular gas in the Milky Way, providing an environment where the validity of star-formation prescriptions can be tested. Here we show that by several measures, the current star formation rate in the CMZ is an order-of-magnitude lower than the rates predicted by the currently accepted prescriptions. In particular, the region 1 deg < l < 3.5 deg, |b| < 0.5 deg contains ~10^7 Msun of dense molecular gas -- enough to form 1000 Orion-like clusters -- but the present-day star formation rate within this gas is only equivalent to that in Orion. In addition to density, another property of molecular clouds, such as the amplitude of turbulent motions, must be included in the star-formation prescription to predict the star formation rate in a given mass of molecular gas.
    Monthly Notices of the Royal Astronomical Society 02/2013; 429(2):987. · 5.52 Impact Factor
  • Source
    Philip F. Hopkins, Dusan Keres, Norman Murray
    [Show abstract] [Hide abstract]
    ABSTRACT: Rapid accretion of cold gas plays a crucial role in getting gas into galaxies. It has been suggested that this accretion proceeds along narrow streams that might also directly drive the turbulence in galactic gas, dynamical disturbances, and bulge formation. In cosmological simulations, however, it is impossible to isolate and hence disentangle the effect of accretion from internal instabilities and mergers. Moreover, in most cosmological simulations, the phase structure and turbulence in the ISM arising from stellar feedback are treated in a sub-grid manner, so that feedback cannot generate ISM turbulence. In this paper we therefore test the effects of cold streams in extremely high-resolution simulations of otherwise isolated galaxy disks using detailed models for star formation and feedback; we then include or exclude mock cold flows falling onto the galaxies with accretion rates, velocities and geometry set to maximize their effect on the disk. We find: (1) Turbulent velocity dispersions in gas disks are identical with or without the cold flow; the energy injected by the flow is dissipated where it meets the disk. (2) In runs without stellar feedback, the presence of a cold flow has essentially no effect on runaway local collapse, resulting in star formation rates (SFRs) that are far too large. (3) Disks in runs with feedback and cold flows have higher SFRs, but only insofar as they have more gas. (4) Because flows are extended relative to the disk, they do not trigger strong resonant responses and so induce weak morphological perturbation (bulge formation via instabilities is not accelerated). (5) However, flows can thicken the disk by direct contribution of out-of-plane streams. We conclude that while inflows are critical over cosmological timescales to determine the supply and angular momentum of gas disks, they have weak instantaneous dynamical effects on galaxies.
    01/2013;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We study galaxy super-winds driven in major mergers, using pc-resolution simulations with detailed models for stellar feedback that can self-consistently follow the formation/destruction of GMCs and generation of winds. The models include molecular cooling, star formation at high densities in GMCs, and gas recycling and feedback from SNe (I&II), stellar winds, and radiation pressure. We study mergers of systems from SMC-like dwarfs and Milky Way analogues to z~2 starburst disks. Multi-phase super-winds are generated in all passages, with outflow rates up to ~1000 M_sun/yr. However, the wind mass-loading efficiency (outflow rate divided by SFR) is similar to that in isolated galaxy counterparts of each merger: it depends more on global galaxy properties (mass, size, escape velocity) than on the dynamical state of the merger. Winds tend to be bi- or uni-polar, but multiple 'events' build up complex morphologies with overlapping, differently-oriented bubbles/shells at a range of radii. The winds have complex velocity and phase structure, with material at a range of speeds up to ~1000 km/s, and a mix of molecular, ionized, and hot gas that depends on galaxy properties and different feedback mechanisms. These simulations resolve a problem in some 'sub-grid' models, where simple wind prescriptions can dramatically suppress merger-induced starbursts. But despite large mass-loading factors (>~10) in the winds, the peak SFRs are comparable to those in 'no wind' simulations. Wind acceleration does not act equally, so cold dense gas can still lose angular momentum and form stars, while blowing out gas that would not have participated in the starburst in the first place. Considerable wind material is not unbound, and falls back on the disk at later times post-merger, leading to higher post-starburst SFRs in the presence of stellar feedback. This may require AGN feedback to explain galaxy quenching.
    Monthly Notices of the Royal Astronomical Society 01/2013; 433(1). · 5.52 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We show that the mass fraction of GMC gas (n>100 cm^-3) in dense (n>>10^4 cm^-3) star-forming clumps, observable in dense molecular tracers (L_HCN/L_CO(1-0)), is a sensitive probe of the strength and mechanism(s) of stellar feedback. Using high-resolution galaxy-scale simulations with pc-scale resolution and explicit models for feedback from radiation pressure, photoionization heating, stellar winds, and supernovae (SNe), we make predictions for the dense molecular gas tracers as a function of GMC and galaxy properties and the efficiency of stellar feedback. In models with weak/no feedback, much of the mass in GMCs collapses into dense sub-units, predicting L_HCN/L_CO(1-0) ratios order-of-magnitude larger than observed. By contrast, models with feedback properties taken directly from stellar evolution calculations predict dense gas tracers in good agreement with observations. Changing the strength or timing of SNe tends to move systems along, rather than off, the L_HCN-L_CO relation (because SNe heat lower-density material, not the high-density gas). Changing the strength of radiation pressure (which acts efficiently in the highest density gas), however, has a much stronger effect on L_HCN than on L_CO. We predict that the fraction of dense gas (L_HCN/L_CO(1-0)) increases with increasing GMC surface density; this drives a trend in L_HCN/L_CO(1-0) with SFR and luminosity which has tentatively been observed. Our results make specific predictions for enhancements in the dense gas tracers in unusually dense environments such as ULIRGs and galactic nuclei (including the galactic center).
    Monthly Notices of the Royal Astronomical Society 09/2012; 433(1). · 5.52 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We use simulations with realistic models for stellar feedback to study galaxy mergers. These high resolution (1 pc) simulations follow formation and destruction of individual GMCs and star clusters. The final starburst is dominated by in situ star formation, fueled by gas which flows inwards due to global torques. The resulting high gas density results in rapid star formation. The gas is self gravitating, and forms massive (~10^10 M_sun) GMCs and subsequent super-starclusters (masses up to 10^8 M_sun). However, in contrast to some recent simulations, the bulk of new stars which eventually form the central bulge are not born in superclusters which then sink to the center of the galaxy, because feedback efficiently disperses GMCs after they turn several percent of their mass into stars. Most of the mass that reaches the nucleus does so in the form of gas. The Kennicutt-Schmidt law emerges naturally as a consequence of feedback balancing gravitational collapse, independent of the small-scale star formation microphysics. The same mechanisms that drive this relation in isolated galaxies, in particular radiation pressure from IR photons, extend over seven decades in SFR to regulate star formation in the most extreme starbursts (densities >10^4 M_sun/pc^2). Feedback also drives super-winds with large mass loss rates; but a significant fraction of the wind material falls back onto the disks at later times, leading to higher post-starburst SFRs in the presence of stellar feedback. Strong AGN feedback is required to explain sharp cutoffs in star formation rate. We compare the predicted relic structure, mass profile, morphology, and efficiency of disk survival to simulations which do not explicitly resolve GMCs or feedback. Global galaxy properties are similar, but sub-galactic properties and star formation rates can differ significantly.
    Monthly Notices of the Royal Astronomical Society 05/2012; 430(3). · 5.52 Impact Factor
  • Norman W Murray
    [Show abstract] [Hide abstract]
    ABSTRACT: The Kepler space telescope can determine the mass and orbital period of unseen planets orbiting distant stars.
    Science 05/2012; 336(6085):1121-2. · 31.20 Impact Factor
  • Source
    E. J. Lee, N. Murray, M. Rahman
    [Show abstract] [Hide abstract]
    ABSTRACT: We analyze Spitzer GLIMPSE, MSX, and WMAP images of the Milky Way to identify 8 micron and free-free sources in the Galaxy. Seventy-two of the eighty-eight WMAP sources have coverage in the GLIMPSE and MSX surveys suitable for identifying massive star forming complexes (SFC). We measure the ionizing luminosity functions of the SFCs and study their role in the turbulent motion of the Galaxy's molecular gas. We find a total Galactic free-free flux f_{\nu} = 46177.6 Jy; the 72 WMAP sources with full 8 micron coverage account for 34263.5 Jy (~75%), with both measurements made at \nu=94GHz (W band). We find a total of 280 SFCs, of which 168 have unique kinematic distances and free-free luminosities. We use a simple model for the radial distribution of star formation to estimate the free-free and ionizing luminosity for the sources lacking distance determinations. The total dust-corrected ionizing luminosity is Q = 2.9 \pm 0.5 x 10^53 photons s^-1, which implies a galactic star formation rate of 1.2 \pm 0.2 M_{\sun} yr^-1. We present the (ionizing) luminosity function of the SFCs, and show that 24 sources emit half the ionizing luminosity of the Galaxy. The SFCs appear as bubbles in GLIMPSE or MSX images; the radial velocities associated with the bubble walls allow us to infer the expansion velocity of the bubbles. We calculate the kinetic luminosity of the bubble expansion and compare it to the turbulent luminosity of the inner molecular disk. SFCs emitting 80% of the total galactic free-free luminosity produce a kinetic luminosity equal to 65% of the turbulent luminosity in the inner molecular disk. This suggests that the expansion of the bubbles is a major driver of the turbulent motion of the inner Milky Way molecular gas.
    The Astrophysical Journal 04/2012; 752(2). · 6.73 Impact Factor
  • Snezana Prodan, N. Murray
    [Show abstract] [Hide abstract]
    ABSTRACT: Low mass X-ray binary 4U 1820-30 is an 11-min period binary with two very interesting properties: a luminosity variation by factor of 2 with a period of 170 days and a negative period derivative. It has been suggested that the 170-day period in the light curve of the low mass X-ray binary 4U 1820-30 arises from the presence of a third body with a large inclination to the binary orbit. We show that this long period motion arises if the system is librating around the stable fixed point in a deep resonance. We demonstrate that mass transfer drives the system toward this fixed point, and calculate, both analytically and via numerical integrations, that the period of libration is of order 170 days when the mutual inclination is near the critical value required to induce eccentricity oscillation by the third body. The non-zero eccentricity of the binary, combined with tidal dissipation, implies that the rate of change of the binary period would be slower than, or even of opposite sign to, that implied by standard mass transfer models. If the 170-day period results from libration, then, contrary to appearances, the orbital period of the inner binary is increasing with time; in that case we can obtain a lower limit on tidal dissipation factor Q of the white dwarf secondary for the fiducial eccentricity of the inner binary. It appears unlikely that the observed negative period derivative results from the smaller than expected (but positive) value of the period derivative combined with the previously suggested acceleration of the system in the gravitational field of the host globular cluster NGC 6624.
    01/2012;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We use numerical simulations of isolated galaxies to study the effects of stellar feedback on the formation and evolution of giant star-forming gas 'clumps' in high-redshift, gas-rich galaxies. Such galactic disks are unstable to the formation of bound gas-rich clumps whose properties initially depend only on global disk properties, not the microphysics of feedback. In simulations without stellar feedback, clumps turn an order-unity fraction of their mass into stars and sink to the center, forming a large bulge and kicking most of the stars out into a much more extended stellar envelope. By contrast, strong radiative stellar feedback disrupts even the most massive clumps after they turn ~10-20% of their mass into stars, in a timescale of ~10-100 Myr, ejecting some material into a super-wind and recycling the rest of the gas into the diffuse ISM. This suppresses the bulge formation rate by direct 'clump coalescence' by a factor of several. However, the galactic disks do undergo significant internal evolution in the absence of mergers: clumps form and disrupt continuously and torque gas to the galactic center. The resulting evolution is qualitatively similar to bar/spiral evolution in simulations with a more homogeneous ISM.
    Monthly Notices of the Royal Astronomical Society 11/2011; 427(2). · 5.52 Impact Factor
  • Source
    Snezana Prodan, Norman Murray
    [Show abstract] [Hide abstract]
    ABSTRACT: It has been suggested that the 170 day period in the light curve of the low mass X-ray binary 4U 1820-30 arises from the presence of a third body with a large inclination to the binary orbit. We show that this long period motion arises if the system is librating around the stable fixed point in a Kozai resonance. We demonstrate that mass transfer drives the system toward this fixed point, and calculate, both analytically and via numerical integrations, that the period of libration is of order 170 days when the mutual inclination is near the Kozai critical value. The non-zero eccentricity of the binary, combined with tidal dissipation, implies that the rate of change of the binary period would be slower than, or even of opposite sign to, that implied by standard mass transfer models. If the 170 day period results from libration, then, contrary to appearances, the orbital period of the inner binary is increasing with time; in that case, (e/0.009)^2Q/k_2 > 2.5 x 10^9, where k_2 = 0.01 is the tidal Love number and e = 0.009 is the fiducial eccentricity of the inner binary. It appears unlikely that the observed negative period derivative results from the smaller than expected (but positive) value of \dot P combined with the previously suggested acceleration of the system in the gravitational field of the host globular cluster NGC 6624. The discrepancy between the observed and expected period derivative requires further investigation.
    The Astrophysical Journal 10/2011; · 6.73 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We present numerical methods for including stellar feedback in galaxy-scale simulations. We include heating by SNe (I & II), gas recycling and shock-heating from O-star & AGB winds, HII photoionization, and radiation pressure from stellar photons. The energetics and time-dependence are taken directly from stellar evolution models. We implement these in simulations with pc-scale resolution, modeling galaxies from SMC-like dwarfs and MW analogues to massive z~2 starburst disks. Absent feedback, gas cools and collapses without limit. With feedback, the ISM reaches a multi-phase steady state in which GMCs continuously form, disperse, and re-form. Our primary results include: (1) Star forming galaxies generically self-regulate at Toomre Q~1. Most of the volume is in diffuse hot gas with most of the mass in dense GMC complexes. The phase structure and gas mass at high densities are much more sensitive probes of stellar feedback physics than integrated quantities (Toomre Q or gas velocity dispersion). (2) Different feedback mechanisms act on different scales: radiation & HII pressure are critical to prevent runaway collapse of dense gas in GMCs. SNe and stellar winds dominate the dynamics of volume-filling hot gas; however this primarily vents out of the disk. (3) The galaxy-averaged SFR is determined by feedback. For given feedback efficiency, restricting star formation to molecular gas or modifying the cooling function has little effect; but changing feedback mechanisms directly translates to shifts off the Kennicutt-Schmidt relation. (4) Self-gravity leads to marginally-bound GMCs with an ~M^-2 mass function with a cutoff at the Jeans mass; they live a few dynamical times before being disrupted by stellar feedback and turn ~1-10% of their mass into stars (increasing from dwarfs through starburst galaxies). Low-mass GMCs are preferentially unbound.
    Monthly Notices of the Royal Astronomical Society 10/2011; · 5.52 Impact Factor

Publication Stats

2k Citations
431.92 Total Impact Points

Institutions

  • 1998–2014
    • University of Toronto
      • Canadian Institute for Theoretical Astrophysics
      Toronto, Ontario, Canada
  • 2006
    • Weizmann Institute of Science
      • Faculty of Physics
      Tell Afif, Tel Aviv, Israel
  • 1999
    • Harvard-Smithsonian Center for Astrophysics
      • Smithsonian Astrophysical Observatory
      Cambridge, Massachusetts, United States