Arthur Kosowsky

University of Oxford, Oxford, England, United Kingdom

Are you Arthur Kosowsky?

Claim your profile

Publications (131)585.09 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We present Southern African Large Telescope (SALT) follow-up observations of seven massive clusters detected by the Atacama Cosmology Telescope (ACT) on the celestial equator using the Sunyaev-Zel'dovich (SZ) effect. We conducted multi-object spectroscopic observations with the Robert Stobie Spectrograph in order to measure galaxy redshifts in each cluster field, determine the cluster line-of-sight velocity dispersions, and infer the cluster dynamical masses. We find that the clusters, which span the redshift range 0.3 < z < 0.55, range in mass from (5 -- 20) x 10$^{14}$ solar masses (M200c). Their masses, given their SZ signals, are similar to those of southern hemisphere ACT clusters previously observed using Gemini and the VLT. We note that the brightest cluster galaxy in one of the systems studied, ACT-CL J0320.4+0032 at z = 0.38, hosts a Type II quasar. To our knowledge, this is only the third such system discovered, and therefore may be a rare example of a very massive halo in which quasar-mode feedback is actively taking place.
    Monthly Notices of the Royal Astronomical Society 06/2015; 449(4):4010-4026. DOI:10.1093/mnras/stv595 · 5.23 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We present a statistical detection of the gravitational lensing of the cosmic microwave background by $10^{13}$ solar mass dark matter halos. Lensing convergence maps from the Atacama Cosmology Telescope Polarimeter (ACTPol) are stacked at the positions of around 12,000 optically-selected CMASS galaxies from the SDSS-III/BOSS survey. The mean lensing signal is consistent with simulated dark matter halo profiles, and is favored over a null signal at 3.2 sigma significance. This result demonstrates the potential of microwave background lensing to probe the dark matter distribution in galaxy group and galaxy cluster halos.
    Physical Review Letters 04/2015; 114(15):151302. DOI:10.1103/PhysRevLett.114.151302 · 7.73 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Two-point correlation functions of cosmic microwave background polarization provide a physically independent probe of the surprising suppression of correlations in the cosmic microwave background temperature anisotropies at large angular scales. We investigate correlation functions constructed from both the Q and U Stokes parameters and from the E and B polarization components. The dominant contribution to these correlation functions comes from local physical effects at the last scattering surface or from the epoch of reionization at high redshift, so all should be suppressed if the temperature suppression is due to an underlying lack of correlations in the cosmological metric perturbations larger than a given scale. We evaluate the correlation functions for the standard ΛCDM cosmology constrained by the observed temperature correlation function, and compute statistics characterizing their suppression on large angular scales. Future full-sky polarization maps with minimal systematic errors on large angular scales will provide strong tests of whether the observed temperature correlation function is a statistical fluke or reflects a fundamental shortcoming of the standard cosmological model.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Two-point correlation functions of cosmic microwave background polarization provide a physically independent probe of the surprising suppression of correlations in the cosmic microwave background temperature anisotropies at large angular scales. We investigate correlation functions constructed from both the Q and U Stokes parameters and from the E and B polarization components. The dominant contribution to these correlation functions comes from local physical effects at the last scattering surface or from the epoch of reionization at high redshift, so all should be suppressed if the temperature suppression is due to an underlying lack of correlations in the cosmological metric perturbations larger than a given scale. We evaluate the correlation functions for the standard $\Lambda$CDM cosmology constrained by the observed temperature correlation function, and compute statistics characterizing their suppression on large angular scales. Future full-sky polarization maps with minimal systematic errors on large angular scales will provide strong tests of whether the observed temperature correlation function is a statistical fluke or reflects a fundamental shortcoming of the standard cosmological model.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We measure the cross-correlation of cosmic microwave background lensing convergence maps derived from Atacama Cosmology Telescope data with galaxy lensing convergence maps as measured by the Canada-France-Hawaii Telescope Stripe 82 Survey. The CMB-galaxy lensing cross power spectrum is measured for the first time with a significance of 3.2{\sigma}, which corresponds to a 16% constraint on the amplitude of density fluctuations at redshifts ~ 0.9. With upcoming improved lensing data, this novel type of measurement will become a powerful cosmological probe, providing a precise measurement of the mass distribution at intermediate redshifts and serving as a calibrator for systematic biases in weak lensing measurements.
    Physical Review D 03/2015; 91:062001. DOI:10.1103/PhysRevD.91.062001 · 4.86 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We correlate the positions of radio galaxies in the FIRST survey with the CMB lensing convergence estimated from the Atacama Cosmology Telescope over 470 square degrees to determine the bias of these galaxies. We remove optically cross-matched sources below redshift $z=0.2$ to preferentially select Active Galactic Nuclei (AGN). We measure the angular cross-power spectrum $C_l^{\kappa g}$ at $4.4\sigma$ significance in the multipole range $100<l<3000$, corresponding to physical scales between $\approx$ 2--60 Mpc at an effective redshift $z_{\rm eff}= 1.5$. Modelling the AGN population with a redshift-dependent bias, the cross-spectrum is well fit by the Planck best-fit $\Lambda$CDM cosmological model. Fixing the cosmology we fit for the overall bias model normalization, finding $b(z_{\rm eff}) = 3.5 \pm 0.8$ for the full galaxy sample, and $b(z_{\rm eff})=4.0\pm1.1 (3.0\pm1.1)$ for sources brighter (fainter) than 2.5 mJy. This measurement characterizes the typical halo mass of radio-loud AGN: we find $\log(M_{\rm halo} / M_\odot) = 13.6^{+0.3}_{-0.4}$.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Quasidilaton massive gravity offers a physically well-defined gravitational theory with non-zero graviton mass. We present the full set of dynamical equations governing the expansion history of the universe, valid during radiation domination, matter domination, and a late-time self-accelerating epoch related to the graviton mass. The existence of self-consistent solutions constrains the amplitude of the quasi-dilaton field and the graviton mass, as well as other model parameters. We point out that the effective mass of gravitational waves can be significantly larger than the graviton mass, opening the possibility that a single theory can explain both the late-time acceleration of the cosmic expansion and modifications of structure growth leading to the suppression of large-angle correlations observed in the cosmic microwave background.
    Physical Review D 12/2014; 91(4). DOI:10.1103/PhysRevD.91.041301 · 4.86 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We present a measurement of the gravitational lensing of the Cosmic Microwave Background (CMB) temperature and polarization fields obtained by cross-correlating the reconstructed convergence signal from the first season of ACTPol data at 146 GHz with Cosmic Infrared Background (CIB) fluctuations measured using the Planck satellite. Using an overlap area of 206 square degrees, we detect gravitational lensing of the CMB polarization by large-scale structure at a statistical significance of 4.5 sigma. Combining both CMB temperature and polarization data gives a lensing detection at 9.1 sigma significance. A B-mode polarization lensing signal is present with a significance of 3.2 sigma. We also present the first measurement of CMB lensing--CIB correlation at small scales corresponding to l > 2000. Null tests and systematic checks show that our results are not significantly biased by astrophysical or instrumental systematic effects, including Galactic dust. Fitting our measurements to the best-fit lensing-CIB cross power spectrum measured in Planck data, scaled by an amplitude A, gives A=1.02 +0.12/-0.18 (stat.) +/-0.06(syst.), consistent with the Planck results.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We present a measurement of the one-point probability distribution function (PDF) of the thermal Sunyaev-Zel'dovich (tSZ) decrement in the pixel temperature histogram of filtered 148 GHz sky maps from the Atacama Cosmology Telescope (ACT). The PDF includes the signal from all galaxy clusters in the map, including objects below the signal-to-noise threshold for individual detection, making it a particularly sensitive probe of the amplitude of matter density perturbations, $\sigma_8$. We use a combination of analytic halo model calculations and numerical simulations to compute the theoretical tSZ PDF and its covariance matrix, accounting for all noise sources and including relativistic corrections. From the measured ACT 148 GHz PDF alone, we find $\sigma_8 = 0.793 \pm 0.018$, with additional systematic errors of $\pm 0.017$ due to uncertainty in intracluster medium gas physics and $\pm 0.006$ due to uncertainty in infrared point source contamination. Using effectively the same data set, the statistical error here is a factor of two lower than that found in ACT's previous $\sigma_8$ determination based solely on the skewness of the tSZ signal. In future temperature maps with higher sensitivity, the tSZ PDF will break the degeneracy between intracluster medium gas physics and cosmological parameters.
  • Source
    Simone Aiola, Arthur Kosowsky, Bingjie Wang
    [Show abstract] [Hide abstract]
    ABSTRACT: The accelerating expansion of the universe at recent epochs is encoded in the cosmic microwave background: a few percent of the total temperature fluctuations are generated by evolving gravitational potentials which trace the large-scale structures in the universe. This signature of dark energy, the Integrated Sachs-Wolfe Effect, has been detected by averaging temperatures in the WMAP sky maps corresponding to the directions of superstructures in the Sloan Digital Sky Survey data release 6. We model the maximum average peak signal expected in the standard $\Lambda$CDM cosmological model, using Gaussian random realizations of the microwave sky, including correlations between different physical contributions to the temperature fluctuations and between different redshift ranges of the evolving gravitational potentials. We find good agreement with the mean temperature peak amplitude from previous theoretical estimates based on large-scale structure simulations, but with larger statistical uncertainties. We apply our simulation pipeline to four different foreground-cleaned microwave temperature maps from Planck and WMAP data, finding a mean temperature peak signal at previously identified sky locations which exceeds our theoretical mean signal at a statistical significance of about $2.5\sigma$ and which differs from a null signal at $3.5\sigma$.
    Physical Review D 10/2014; 91(4). DOI:10.1103/PhysRevD.91.043510 · 4.86 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: A period of inflation in the early universe produces a nearly scale-invariant spectrum of gravitational waves over a huge range in wavelength. If the amplitude of this gravitational wave background is large enough to be detectable with microwave background polarization measurements, it will also be detectable directly with a space-based laser interferometer. Using a Monte Carlo sampling of inflation models, we demonstrate that the combination of these two measurements will strongly constrain the expansion history during inflation and the physical mechanism driving it.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We analyze the existence and stability of dynamical attractor solutions for cosmological inflation driven by the coupling between fermions and a gauge field. Assuming a spatially homogeneous and isotropic gauge field and fermion current, the interacting fermion equation of motion reduces to that of a free fermion up to a phase shift. Consistency of the model is ensured via the Stuckelberg mechanism. We prove the existence of exactly one stable solution, and demonstrate the stability numerically. Inflation arises without fine tuning, and does not require postulating any effective potential or non-standard coupling.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: If a primordial magnetic field in the universe has non-zero helicity, the violation of parity symmetry results in non-zero correlations between cosmic microwave background temperature and B-mode polarization. In this paper we derive approximations to the relevant microwave background power spectra arising from a helical magnetic field. Using the cross-power spectrum between temperature and B-mode polarization from the WMAP nine-year data, we set a 95\% confidence level upper limit on the helicity amplitude to be 10 nG$^2$ Gpc for helicity spectral index $n_H = -1.9$, for a cosmological magnetic field with effective field strength of 3 nG and a power-law index $n_B = -2.9$ near the scale-invariant value. Future microwave background polarization maps with greater sensitivity will be able to detect the helicity of an inflationary magnetic field well below the maximum value allowed by microwave background constraints on the magnetic field amplitude.
    Physical Review D 08/2014; 90(8). DOI:10.1103/PhysRevD.90.083004 · 4.86 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Future arcminute resolution polarization data from ground-based Cosmic Microwave Background (CMB) observations can be used to estimate the contribution to the temperature power spectrum from the primary anisotropies and to uncover the signature of reionization near $\ell=1500$ in the small angular-scale temperature measurements. Our projections are based on combining expected small-scale E-mode polarization measurements from Advanced ACTPol in the range $300<\ell<3000$ with simulated temperature data from the full Planck mission in the low and intermediate $\ell$ region, $2<\ell<2000$. We show that the six basic cosmological parameters determined from this combination of data will predict the underlying primordial temperature spectrum at high multipoles to better than $1\%$ accuracy. Assuming an efficient cleaning from multi-frequency channels of most foregrounds in the temperature data, we investigate the sensitivity to the only residual secondary component, the kinematic Sunyaev-Zel'dovich (kSZ) term. The CMB polarization is used to break degeneracies between primordial and secondary terms present in temperature and, in effect, to remove from the temperature data all but the residual kSZ term. We estimate a $15 \sigma$ detection of the diffuse homogeneous kSZ signal from expected AdvACT temperature data at $\ell>1500$, leading to a measurement of the amplitude of matter density fluctuations, $\sigma_8$, at $1\%$ precision. Alternatively, by exploring the reionization signal encoded in the patchy kSZ measurements, we bound the time and duration of the reionization with $\sigma(z_{\rm re})=1.1$ and $\sigma(\Delta z_{\rm re})=0.2$. We find that these constraints degrade rapidly with large beam sizes, which highlights the importance of arcminute-scale resolution for future CMB surveys.
    Journal of Cosmology and Astroparticle Physics 06/2014; JCAP08(2014)010. DOI:10.1088/1475-7516/2014/08/010 · 6.04 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We report on measurements of the cosmic microwave background (CMB) and celestial polarization at 146 GHz made with the Atacama Cosmology Telescope Polarimeter (ACTPol) in its first three months of observing. Four regions of sky covering a total of 270 square degrees were mapped with an angular resolution of $1.3'$. The map noise levels in the four regions are between 11 and 17 $\mu$K-arcmin. We present TT, TE, EE, TB, EB, and BB power spectra from three of these regions. The observed E-mode polarization power spectrum, displaying six acoustic peaks in the range $200<\ell<3000$, is an excellent fit to the prediction of the best-fit cosmological models from WMAP9+ACT and Planck data. The polarization power spectrum, which mainly reflects primordial plasma velocity perturbations, provides an independent determination of cosmological parameters consistent with those based on the temperature power spectrum, which results mostly from primordial density perturbations. We find that without masking any point sources in the EE data at $\ell<9000$, the Poisson tail of the EE power spectrum due to polarized point sources has an amplitude less than $2.4$ $\mu$K$^2$ at $\ell = 3000$ at 95\% confidence. Finally, we report that the Crab Nebula, an important polarization calibration source at microwave frequencies, has 8.7\% polarization with an angle of $150.9^\circ \pm 0.5^\circ$ when smoothed with a $5'$ Gaussian beam.
    Journal of Cosmology and Astroparticle Physics 05/2014; JCAP10(2014)007. DOI:10.1088/1475-7516/2014/10/007 · 5.88 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We present the temperature power spectra of the cosmic microwave background (CMB) derived from the three seasons of data from the Atacama Cosmology Telescope (ACT) at 148 GHz and 218 GHz, as well as the cross-frequency spectrum between the two channels. We detect and correct for contamination due to the Galactic cirrus in our equatorial maps. We present the results of a number of tests for possible systematic error and conclude that any effects are not significant compared to the statistical errors we quote. Where they overlap, we cross-correlate the ACT and the South Pole Telescope (SPT) maps and show they are consistent. The measurements of higher-order peaks in the CMB power spectrum provide an additional test of the Lambda CDM cosmological model, and help constrain extensions beyond the standard model. The small angular scale power spectrum also provides constraining power on the Sunyaev-Zel'dovich effects and extragalactic foregrounds. We also present a measurement of the CMB gravitational lensing convergence power spectrum at 4.6-sigma detection significance.
    Journal of Cosmology and Astroparticle Physics 04/2014; 2014(04):014. DOI:10.1088/1475-7516/2014/04/014 · 5.88 Impact Factor
  • Source
    Jerod Caligiuri, Arthur Kosowsky
    [Show abstract] [Hide abstract]
    ABSTRACT: The measurement of B-mode polarization of the cosmic microwave background at large angular scales by the BICEP experiment suggests a stochastic gravitational wave background from early-universe inflation with a surprisingly large amplitude. The power spectrum of these tensor perturbations can be probed both with further measurements of the microwave background polarization at smaller scales, and also directly via interferometry in space. We show that sufficiently sensitive high-resolution B-mode measurements will ultimately have the ability to test the inflationary consistency relation between the amplitude and spectrum of the tensor perturbations, confirming their inflationary origin. Additionally, a precise B-mode measurement of the tensor spectrum will predict the tensor amplitude on solar system scales to 20% accuracy for an exact power law tensor spectrum, so a direct detection will then measure the running of the tensor spectral index to high precision.
    Physical Review Letters 03/2014; 112(19). DOI:10.1103/PhysRevLett.112.191302 · 7.73 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We present the temperature power spectrum of the Cosmic Microwave Background obtained by cross-correlating maps from the Atacama Cosmology Telescope (ACT) at 148 and 218 GHz with maps from the Planck satellite at 143 and 217 GHz, in two overlapping regions covering 592 square degrees. We find excellent agreement between the two datasets at both frequencies, quantified using the variance of the residuals between the ACT power spectra and the ACTxPlanck cross-spectra. We use these cross-correlations to calibrate the ACT data at 148 and 218 GHz, to 0.7% and 2% precision respectively. We find no evidence for anisotropy in the calibration parameter. We compare the Planck 353 GHz power spectrum with the measured amplitudes of dust and cosmic infrared background (CIB) of ACT data at 148 and 218 GHz. We also compare planet and point source measurements from the two experiments.
    Journal of Cosmology and Astroparticle Physics 03/2014; DOI:10.1088/1475-7516/2014/07/016 · 5.88 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We present a statistical analysis of the millimeter-wavelength properties of 1.4 GHz-selected sources and a detection of the Sunyaev-Zel'dovich (SZ) effect associated with the halos that host them. The Atacama Cosmology Telescope (ACT) has conducted a survey at 148 GHz, 218 GHz and 277 GHz along the celestial equator. Using samples of radio sources selected at 1.4 GHz from FIRST and NVSS, we measure the stacked 148, 218 and 277 GHz flux densities for sources with 1.4 GHz flux densities ranging from 5 to 200 mJy. At these flux densities, the radio source population is dominated by active galactic nuclei (AGN), with both steep and flat spectrum populations, which have combined radio-to-millimeter spectral indices ranging from 0.5 to 0.95, reflecting the prevalence of steep spectrum sources at high flux densities and the presence of flat spectrum sources at lower flux densities. The thermal SZ effect associated with the halos that host the AGN is detected at the 5$\sigma$ level through its spectral signature. When we compare the SZ effect with weak lensing measurements of radio galaxies, we find that the relation between the two is consistent with that measured by Planck for local bright galaxies. We present a detection of the SZ effect in some of the lowest mass halos (average $M_{200}\approx10^{13}$M$_{\odot}h_{70}^{-1}$) studied to date. This detection is particularly important in the context of galaxy evolution models, as it confirms that galaxies with radio AGN also typically support hot gaseous halos. With Herschel observations, we show that the SZ detection is not significantly contaminated by dust. We show that 5 mJy$<S_{1.4}<$200 mJy radio sources contribute $\ell(\ell+1)C_{\ell}/(2\pi)=0.37\pm0.03\mu$K$^2$ to the angular power spectrum at $\ell=3000$ at 148 GHz, after accounting for the SZ effect associated with their host halos.
    Monthly Notices of the Royal Astronomical Society 10/2013; 445(1):460-478. DOI:10.1093/mnras/stu1592 · 4.90 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: A lack of correlations in the microwave background temperature between sky directions separated by angles larger than 60 degrees has recently been confirmed by data from the Planck satellite. This feature arises as a random occurrence within the standard LCDM cosmological model less than 0.3 per cent of the time, but so far no other compelling theory to explain this observation has been proposed. Here we investigate the theoretical cross-correlation function between microwave background temperature and the gravitational lensing potential of the microwave background, which in contrast to the temperature correlation function depends strongly on gravitational potential fluctuations interior to our Hubble volume. For standard LCDM cosmology, we generate random sky realizations of the microwave temperature and gravitational lensing, subject to the constraint that the temperature correlation function matches observations, and compare with random skies lacking this constraint. The distribution of large-angle temperature-lensing correlation functions in these two cases is different, and the two cases can be clearly distinguished in around 40 per cent of model realizations. We present an a priori procedure for using similar large-angle correlations between other types of data, to determine whether the lack of large-angle correlations is a statistical fluke or points to a shortcoming of the standard cosmological model.
    Monthly Notices of the Royal Astronomical Society 10/2013; 442(3). DOI:10.1093/mnras/stu942 · 5.23 Impact Factor

Publication Stats

5k Citations
585.09 Total Impact Points

Institutions

  • 2013–2015
    • University of Oxford
      Oxford, England, United Kingdom
  • 2005–2015
    • University of Pittsburgh
      • Physics and Astronomy
      Pittsburgh, Pennsylvania, United States
  • 2012–2013
    • University of Toronto
      • Canadian Institute for Theoretical Astrophysics
      Toronto, Ontario, Canada
  • 2010–2013
    • Princeton University
      • • Department of Astrophysical Sciences
      • • Department of Physics
      Princeton, New Jersey, United States
    • Instituto Nacional de Astrofísica, Óptica y Electrónica (INAOE)
      Cholula de Riva dabia, Puebla, Mexico
  • 2010–2012
    • University of KwaZulu-Natal
      • School of Mathematics, Statistics and Computer Science
      Port Natal, KwaZulu-Natal, South Africa
  • 2011
    • University of British Columbia - Vancouver
      • Department of Physics and Astronomy
      Vancouver, British Columbia, Canada
  • 1999–2005
    • Rutgers, The State University of New Jersey
      • Department Physics and Astronomy
      New Brunswick, New Jersey, United States
  • 1992–2002
    • University of Chicago
      • • Department of Astronomy and Astrophysics
      • • Department of Physics
      Chicago, Illinois, United States
  • 1998
    • Tufts University
      • Department of Physics and Astronomy
      Georgia, United States
  • 1995–1997
    • Harvard University
      • Department of Physics
      Cambridge, Massachusetts, United States
  • 1996
    • Harvard-Smithsonian Center for Astrophysics
      Cambridge, Massachusetts, United States
  • 1992–1995
    • NASA
      Вашингтон, West Virginia, United States
  • 1994
    • Vascular and Interventional Radiology
      Chicago, Illinois, United States