Niall O'Donnell

Howard Hughes Medical Institute, Ashburn, Virginia, United States

Are you Niall O'Donnell?

Claim your profile

Publications (4)24.5 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: Cellular response to environmental, physiological, or chemical stress is key to survival following injury or disease. Here we describe a unique signaling mechanism by which cells detect and respond to stress in order to survive. A wide variety of stress stimuli rapidly increase nucleocytoplasmic protein modification by O-linked beta-N-acetylglucosamine (O-GlcNAc), an essential post-translational modification of Ser and Thr residues of metazoans. Blocking this post-translational modification, or reducing it, renders cells more sensitive to stress and results in decreased cell survival; and increasing O-GlcNAc levels protects cells. O-GlcNAc regulates both the rates and extent of the stress-induced induction of heat shock proteins, providing a molecular basis for these findings.
    Journal of Biological Chemistry 08/2004; 279(29):30133-42. · 4.65 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The Ogt gene encodes a glycosyltransferase that links N-acetylglucosamine to serine and threonine residues (O-GlcNAc) on nuclear and cytosolic proteins. Efforts to study a mammalian model of Ogt deficiency have been hindered by the requirement for this X-linked gene in embryonic stem cell viability, necessitating the use of conditional mutagenesis in vivo. We have extended these observations by segregating Ogt mutation to distinct somatic cell types, including neurons, thymocytes, and fibroblasts, the latter by an approach developed for inducible Ogt mutagenesis. We show that Ogt mutation results in the loss of O-GlcNAc and causes T-cell apoptosis, neuronal tau hyperphosphorylation, and fibroblast growth arrest with altered expression of c-Fos, c-Jun, c-Myc, Sp1, and p27. We further segregated the mutant Ogt allele to parental gametes by oocyte- and spermatid-specific Cre-loxP mutagenesis. By this we established an in vivo genetic approach that supports the ontogeny of female heterozygotes bearing mutant X-linked genes required during embryogenesis. Successful production and characterization of such female heterozygotes further indicates that mammalian cells commonly require a functional Ogt allele. We find that O-GlcNAc modulates protein phosphorylation and expression among essential and conserved cell signaling pathways.
    Molecular and Cellular Biology 03/2004; 24(4):1680-90. · 5.37 Impact Factor
  • Niall O'Donnell
    [Show abstract] [Hide abstract]
    ABSTRACT: O-linked N-acetylglucosamine (O-GlcNAc) is a highly dynamic post-translational modification of cytoplasmic and nuclear proteins. Although the function of this abundant modification is yet to be definitively elucidated, all O-GlcNAc proteins are phosphoproteins. Further, the serine and threonine residues substituted with O-GlcNAc are often sites of, or close to sites of, protein phosphorylation. This implies that there may be a dynamic interplay between these two post-translational modifications to regulate protein function. In this review, the functions of some of the proteins that are modified by O-GlcNAc will be considered in the context of the potential role of the O-GlcNAc modification. Furthermore, predictions will be made as to how cellular function and developmental regulation might be affected by changes in O-GlcNAc levels.
    Biochimica et Biophysica Acta 01/2003; 1573(3):336-45. · 4.66 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Nuclear and cytoplasmic protein glycosylation is a widespread and reversible posttranslational modification in eukaryotic cells. Intracellular glycosylation by the addition of N-acetylglucosamine (GlcNAc) to serine and threonine is catalyzed by the O-GlcNAc transferase (OGT). This “O-GlcNAcylation” of intracellular proteins can occur on phosphorylation sites, and has been implicated in controlling gene transcription, neurofilament assembly, and the emergence of diabetes and neurologic disease. To study OGT function in vivo, we have used gene-targeting approaches in male embryonic stem cells. We find that OGT mutagenesis requires a strategy that retains an intact OGT gene as accomplished by using Cre-loxP recombination, because a deletion in the OGT gene results in loss of embryonic stem cell viability. A single copy of the OGT gene is present in the male genome and resides on the X chromosome near the centromere in region D in the mouse spanning markers DxMit41 and DxMit95, and in humans at Xq13, a region associated with neurologic disease. OGT RNA expression in mice is comparably high among most cell types, with lower levels in the pancreas. Segregation of OGT alleles in the mouse germ line with ZP3-Cre recombination in oocytes reveals that intact OGT alleles are required for completion of embryogenesis. These studies illustrate the necessity of conditional gene-targeting approaches in the mutagenesis and study of essential sex-linked genes, and indicate that OGT participation in intracellular glycosylation is essential for embryonic stem cell viability and for mouse ontogeny.
    Proceedings of the National Academy of Sciences 05/2000; 97(11):5735-5739. · 9.81 Impact Factor