Are you Feiyun An?

Claim your profile

Publications (3)18.1 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: Podophyllotoxin and some of its derivatives are cyclolignans currently used for removing warts and in the clinical treatment of malign neoplasms. As such, they have been an objective of the scientific community for decades, in the search for more potent and more selective anticancer agents. Our interest in the chemoinduction of drug selectivity led us to the design and preparation of new podophyllotoxin derivatives by reaction of podophyllic aldehyde with aliphatic, aromatic, and heteroaromatic amines. Several of the resulting imines displayed a significant selectivity against human colon carcinoma cells, even higher than that of the starting aldehyde. Additional biological studies indicate that these derivatives induce microtubule depolymerization, arrest cells at the G2/M phase of cell cycle, and are able to induce a delayed apoptosis after 48 h of treatment, characterized by caspase-3 activation.
    Journal of Medicinal Chemistry 03/2004; 47(5):1214-22. · 5.61 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Aplidine is a promising antitumor agent derived from the Mediterranean tunicate Aplidium albicans. We have found that Aplidine at nM concentrations (10-100 nM) induced apoptosis in human leukemic cell lines and primary leukemic cell cultures from leukemic patients. Inhibition of the Fas (CD95)/Fas ligand (CD95L) signaling pathway with an antagonistic anti-Fas antibody partially inhibited Aplidine-induced apoptosis. L929 cells were resistant to Aplidine action but underwent apoptosis after transfection with human Fas cDNA. Aplidine induced a rapid and sustained c-Jun NH(2)-terminal kinase activation, and pretreatment with curcumin or SP600125 inhibited Aplidine-induced c-Jun NH(2)-terminal kinase activation and apoptosis. However, inhibition of extracellular signal-regulated kinase and p38 kinase signaling pathways did not affect Aplidine-induced apoptosis. Aplidine induced caspase-3 activation, and caspase inhibition prevented Aplidine-induced apoptosis. Aplidine failed to induce apoptosis in MCF-7 breast cancer cells, defective in caspase-3, additionally implicating caspase-3 in its proapoptotic action. Aplidine also triggered an early release of cytochrome c from mitochondria, and overexpression of bcl-2 by gene transfer abrogated mitochondrial cytochrome c release and apoptosis. Aplidine rapidly induced cleavage of Bid, a mediator that connects the Fas/CD95 cell death receptor to the mitochondrial apoptosis pathway. Primary cultures of normal human cells, including hepatocytes and resting peripheral blood lymphocytes, were spared or weakly affected after Aplidine treatment. Nevertheless, mitogen (phytohemagglutinin/interleukin-2)-activated T lymphocytes resulted sensitively to the apoptotic action of Aplidine. Thus, Aplidine is an extremely potent and rapid apoptotic inducer on leukemic cells that triggers Fas/CD95- and mitochondrial-mediated apoptotic signaling routes, and shows a rather selective apoptotic action on cancer cells and activated T cells.
    Clinical Cancer Research 05/2003; 9(4):1535-45. · 7.84 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: We have found that ecteinascidin-743 (ET-743) inhibited cell proliferation at 1-10 ng/ml, leading to S and G(2)/M arrest and subsequent apoptosis, and induced early apoptosis without previous cell cycle arrest at 10-100 ng/ml in cancer cells. ET-743-mediated apoptosis, did not involve Fas/CD95. ET-743 induced c-Jun NH(2)-terminal kinase (JNK) and caspase-3 activation, and JNK and caspase inhibition prevented ET-743-induced apoptosis. ET-743 failed to promote apoptosis in caspase-3-deficient MCF-7 cells, further implicating caspase-3 in its proapoptotic action. Overexpression of bcl-2 by gene transfer abrogated ET-743-induced apoptosis, but cells underwent cell cycle arrest. ET-743 triggered cytochrome c release from mitochondria that was inhibited by Bcl-2 overexpression. Inhibition of transcription or protein synthesis did not prevent ET-743-induced apoptosis, but abrogated ET-743-induced cell cycle arrest. Microarray analyses revealed changes in the expression of a small number of cell cycle-related genes (p21, GADD45A, cyclin G2, MCM5, and histones) that suggested their putative involvement in ET-743-induced cell cycle arrest. These data indicate that ET-743 is a very potent anticancer drug showing dose-dependent cytostatic and proapoptotic effects through activation of two different signaling pathways, namely a transcription-dependent pathway leading to cell cycle arrest and a transcription-independent route leading to rapid apoptosis that involves mitochondria, JNK, and caspase-3.
    Journal of Biological Chemistry 12/2002; 277(44):41580-9. · 4.65 Impact Factor