F. Pozzi

University of Bologna, Bolonia, Emilia-Romagna, Italy

Are you F. Pozzi?

Claim your profile

Publications (157)465.12 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: [Abridged] We study the evolution of the radio spectral index and far-infrared/radio correlation (FRC) across the star-formation rate-stellar masse (i.e. SFR-M*) plane up to z 2. We start from a M*-selected sample of galaxies with reliable SFR and redshift estimates. We then grid the SFR-M* plane in several redshift ranges and measure the infrared luminosity, radio luminosity, radio spectral index, and ultimately the FRC index (i.e. qFIR) of each SFR-M*-z bin. The infrared luminosities of our SFR-M*-z bins are estimated using their stacked far-infrared flux densities inferred from observations obtained with Herschel. Their radio luminosities and radio spectral indices (i.e. alpha, where Snu nu^-alpha) are estimated using their stacked 1.4GHz and 610MHz flux densities from the VLA and GMRT, respectively. Our far-infrared and radio observations include the most widely studied blank extragalactic fields -GOODS-N/S, ECDFS, and COSMOS- covering a sky area of 2deg^2. Using this methodology, we constrain the radio spectral index and FRC index of star-forming galaxies with M*>10^10Msun and 0<z<2.3. We find that alpha^1.4GHz_610MHz does not evolve significantly with redshift or with the distance of a galaxy with respect to the main sequence (MS) of the SFR-M* plane (i.e. Delta_log(SSFR)_MS=log[SSFR(galaxy)/SSFR_MS(M*,z)]). Instead, star-forming galaxies have a radio spectral index consistent with a canonical value of 0.8, which suggests that their radio spectra are dominated by non-thermal optically thin synchrotron emission. We find that qFIR displays a moderate but statistically significant redshift evolution as qFIR(z)=(2.35+/-0.08)*(1+z)^(-0.12+/-0.04), consistent with some previous literature. Finally, we find no significant correlation between qFIR and Delta_log(SSFR)_MS, though a weak positive trend, as observed in one of our redshift bins, cannot be firmly ruled out using our dataset.
    10/2014;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We study the evolution of the total star formation (SF) activity, total stellar mass and halo occupation distribution in massive halos by using one of the largest X-ray selected sample of galaxy groups with secure spectroscopic identification in the major blank field surveys (ECDFS, CDFN, COSMOS, AEGIS). We provide an accurate measurement of SFR for the bulk of the star-forming galaxies using very deep mid-infrared Spitzer MIPS and far-infrared Herschel PACS observations. For undetected IR sources, we provide a well-calibrated SFR from SED fitting. We observe a clear evolution in the level of SF activity in galaxy groups. The total SF activity in the high redshift groups (0.5<z<1.1) is higher with respect to the low redshift (0.15<z<0.5) sample at any mass by 0.8 ± 0.12 dex. A milder difference (0.35 ± 0.1 dex) is observed between the low redshift bin and the groups at z ∼ 0. We show that the level of SF activity is declining more rapidly in the more massive halos than in the more common lower mass halos. We do not observe any evolution in the halo occupation distribution and total stellar mass-halo mass relations in groups. The picture emerging from our findings suggests that the galaxy population in the most massive systems is evolving faster than galaxies in lower mass halos, consistently with a "halo downsizing" scenario.
    Monthly Notices of the Royal Astronomical Society 09/2014; 000(1). · 4.90 Impact Factor
  • Source
    10th Italian Meeting on AGN; 09/2014
  • [Show abstract] [Hide abstract]
    ABSTRACT: Heavily obscured, Compton Thick (CT, NH>10^24 cm-2) AGN may represent an important phase in AGN/galaxy co-evolution and are expected to provide a significant contribution to the cosmic X-ray background (CXB) at its peak. Through direct X-ray spectra analysis, we selected 39 heavily obscured AGN (NH>3x10^23 cm-2) in the 2 deg^2 XMM-COSMOS survey. Thanks to deeper Chandra data available in the field, we can define 10 of these sources as bona-fide CT, spanning a large range of redshift and luminosity, and estimate the efficiency of our selection to be of the order of 80%. We collected the multi-wavelength information available for these sources, to study the distribution of BH mass (MBH), Eddington ratio (lambda_Edd), stellar mass (M*), specific star formation rate (sSFR) in comparison with a sample of unobscured AGN. We find that highly obscured sources tend to have significantly smaller MBH and higher lambda_Edd with respect to unobscured sources. The sSFR of highly obscured sources is consistent with the one observed for main sequence star forming galaxies, at all redshift. We also present and briefly discuss optical spectra, broad band spectral energy distribution (SED) and morphology for the sample of 10 CT AGN. Both the optical spectra and SED agree with the classification as highly obscured sources: all the available optical spectra are dominated by the stellar component of the host galaxy, and an highly obscured torus component is needed in the SED of all the CT sources. Exploiting the high resolution Hubble images, we show that these highly obscured sources have a significantly larger merger fraction with respect to other X-ray selected samples of AGN. Finally we discuss the implications of our findings in the context of AGN/galaxy co-evolutionary models, and compare our results with the predictions of CXB synthesis models.
    09/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: We present new estimates of redshift-dependent luminosity functions of IR lines detectable by SPICA/SAFARI and excited both by star formation and by AGN activity. The new estimates improve over previous work by using updated evolutionary models and dealing in a self consistent way with emission of galaxies as a whole, including both the starburst and the AGN component. New relationships between line and AGN bolometric luminosity have been derived and those between line and IR luminosities of the starburst component have been updated. These ingredients were used to work out predictions for the source counts in 11 mid/far-IR emission lines partially or entirely excited by AGN activity. We find that the statistics of the emission line detection of galaxies as a whole is mainly determined by the star formation rate, because of the rarity of bright AGNs. We also find that the slope of the line integral number counts is flatter than 2 implying that the number of detections at fixed observing time increases more by extending the survey area than by going deeper. We thus propose a wide spectroscopic survey of 1 hour integration per field-of-view over an area of 5 deg$^{2}$ to detect (at 5${\sigma}$) ~760 AGNs in [OIV]25.89${\mu}$m - the brightest AGN mid-infrared line - out to z~2. Pointed observations of strongly lensed or hyper-luminous galaxies previously detected by large area surveys such as those by Herschel and by the SPT can provide key information on the galaxy-AGN co-evolution out to higher redshifts.
    08/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: The most striking feature of the Cosmic Star Formation History (CSFH) of the Universe is a dramatic drop of the star formation (SF) activity, since z~1. In this work we investigate if the very same process of assembly and growth of structures is one of the major drivers of the observed decline. We study the contribution to the CSFH of galaxies in halos of different masses. This is done by studying the total SFR-halo mass-redshift plane from redshift 0 to redshift z~1.6 in a sample of 57 groups and clusters by using the deepest available mid- and far-infrared surveys conducted with Spitzer MIPS and Herschel PACS and SPIRE. Our results show that low mass groups provide a 60-80% contribution to the CSFH at z~1. Such contribution declines faster than the CSFH in the last 8 billion years to less than 1% at z<0.3, where the overall SF activity is sustained by lower mass halos. More massive systems provide only a marginal contribution (<1%) at any epoch. A simplified abundance matching method shows that the large contribution of low mass groups at z~1 is due to a large fraction (>50%) of very massive, highly star forming Main Sequence galaxies. Below z~1 a quenching process must take place in massive halos to cause the observed faster suppression of their SF activity. Such process must be a slow one though, as most of the models implementing a rapid quenching of the SF activity in accreting satellites significantly underpredicts the observed SF level in massive halos at any redshift. Starvation or the transition from cold to hot accretion would provide a quenching timescale of 1 Gyrs more consistent with the observations. Our results suggest a scenario in which, due to the structure formation process, more and more galaxies experience the group environment and, thus, the associated quenching process. This leads to the progressive suppression of their SF activity shaping the CSFH below z~1.
    07/2014;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: There is now a large consensus that the current epoch of the Cosmic Star Formation History (CSFH) is dominated by low mass galaxies while the most active phase at 1<z<2 is dominated by more massive galaxies, which undergo a faster evolution. Massive galaxies tend to inhabit very massive halos such as galaxy groups and clusters. We aim to understand whether the observed "galaxy downsizing" could be interpreted as a "halo downsizing", whereas the most massive halos, and their galaxy populations, evolve more rapidly than the halos of lower mass. Thus, we study the contribution to the CSFH of galaxies inhabiting group-sized halos. This is done through the study of the evolution of the Infra-Red (IR) luminosity function of group galaxies from redshift 0 to ~1.6. We use a sample of 39 X-ray selected groups in the Extended Chandra Deep Field South (ECDFS), the Chandra Deep Field North (CDFN), and the COSMOS field, where the deepest available mid- and far-IR surveys have been conducted with Spitzer MIPS and Hersche PACS. Groups at low redshift lack the brightest, rarest, and most star forming IR-emitting galaxies observed in the field. Their IR-emitting galaxies contribute <10% of the comoving volume density of the whole IR galaxy population in the local Universe. At redshift >~1, the most IR-luminous galaxies (LIRGs and ULIRGs) are preferentially located in groups, and this is consistent with a reversal of the star-formation rate vs .density anti-correlation observed in the nearby Universe. At these redshifts, group galaxies contribute 60-80% of the CSFH, i.e. much more than at lower redshifts. Below z~1, the comoving number and SFR densities of IR-emitting galaxies in groups decline significantly faster than those of all IR-emitting galaxies. Our results are consistent with a "halo downsizing" scenario and highlight the significant role of "environment" quenching in shaping the CSFH.
    07/2014;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We combine multiwavelength data in the AEGIS-XD and C-COSMOS surveys to measure the typical dark matter halo mass of X-ray selected AGN [Lx(2-10keV)>1e42 erg/s] in comparison with far-infrared selected star-forming galaxies detected in the Herschel/PEP survey (PACS Evolutionary Probe; Lir>1e11 solar) and quiescent systems at z~1. We develop a novel method to measure the clustering of extragalactic populations that uses photometric redshift Probability Distribution Functions in addition to any spectroscopy. This is advantageous in that all sources in the sample are used in the clustering analysis, not just the subset with secure spectroscopy. The method works best for large samples. The loss of accuracy because of the lack of spectroscopy is balanced by increasing the number of sources used to measure the clustering. We find that X-ray AGN, far-infrared selected star-forming galaxies and passive systems in the redshift interval 0.6<z<1.4 are found in halos of similar mass, $\log M_{DMH}/(M_{\odot}\,h^{-1})\approx13.0$. We argue that this is because the galaxies in all three samples (AGN, star-forming, passive) have similar stellar mass distributions, approximated by the J-band luminosity. Therefore all galaxies that can potentially host X-ray AGN, because they have stellar masses in the appropriate range, live in dark matter haloes of $\log M_{DMH}/(M_{\odot}\,h^{-1})\approx13.0$ independent of their star-formation rates. This suggests that the stellar mass of X-ray AGN hosts is driving the observed clustering properties of this population. We also speculate that trends between AGN properties (e.g. luminosity, level of obscuration) and large scale environment may be related to differences in the stellar mass of the host galaxies.
    Monthly Notices of the Royal Astronomical Society 07/2014; 443(4). · 5.52 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We compare various star formation rate (SFR) indicators for star-forming galaxies at $1.4<z<2.5$ in the COSMOS field. The main focus is on the SFRs from the far-IR (PACS-Herschel data) with those from the ultraviolet, for galaxies selected according to the BzK criterion. FIR-selected samples lead to a vastly different slope of the SFR-stellar mass ($M_*$) relation, compared to that of the dominant main sequence population as measured from the UV, since the FIR selection picks predominantly only a minority of outliers. However, there is overall agreement between the main sequences derived with the two SFR indicators, when stacking on the PACS maps the BzK-selected galaxies. The resulting logarithmic slope of the SFR-{$M_*$} relation is $\sim0.8-0.9$, in agreement with that derived from the dust-corrected UV-luminosity. Exploiting deeper 24$\mu$m-Spitzer data we have characterized a sub-sample of galaxies with reddening and SFRs poorly constrained, as they are very faint in the $B$ band. The combination of Herschel with Spitzer data have allowed us to largely break the age/reddening degeneracy for these intriguing sources, by distinguishing whether a galaxy is very red in B-z because of being heavily dust reddened, or whether because star formation has been (or is being) quenched. Finally, we have compared our SFR(UV) to the SFRs derived by stacking the radio data and to those derived from the H$\alpha$ luminosity of a sample of star-forming galaxies at $1.4<z<1.7$. The two sets of SFRs are broadly consistent as they are with the SFRs derived from the UV and by stacking the corresponding PACS data in various mass bins.
    Monthly Notices of the Royal Astronomical Society 06/2014; 443(1). · 5.52 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: By exploiting the VLA-COSMOS and the Herschel-PEP surveys, we investigate the Far Infrared (FIR) properties of radio-selected AGN. To this purpose, from VLA-COSMOS we considered the 1537, F[1.4 GHz]>0.06 mJy sources with a reliable redshift estimate, and sub-divided them into star-forming galaxies and AGN solely on the basis of their radio luminosity. The AGN sample is complete with respect to radio selection at all z<~3.5. 832 radio sources have a counterpart in the PEP catalogue. 175 are AGN. Their redshift distribution closely resembles that of the total radio-selected AGN population, and exhibits two marked peaks at z~0.9 and z~2.5. We find that the probability for a radio-selected AGN to be detected at FIR wavelengths is both a function of radio power and redshift, whereby powerful sources are more likely to be FIR emitters at earlier epochs. This is due to two distinct effects: 1) at all radio luminosities, FIR activity monotonically increases with look-back time and 2) radio activity of AGN origin is increasingly less effective at inhibiting FIR emission. Radio-selected AGN with FIR emission are preferentially located in galaxies which are smaller than those hosting FIR-inactive sources. Furthermore, at all z<~2, there seems to be a preferential (stellar) mass scale M ~[10^{10}-10^{11}] Msun which maximizes the chances for FIR emission. We find such FIR (and MIR) emission to be due to processes indistinguishable from those which power star-forming galaxies. It follows that radio emission in at least 35% of the entire AGN population is the sum of two contributions: AGN accretion and star-forming processes within the host galaxy.
    Monthly Notices of the Royal Astronomical Society 04/2014; 442(1). · 5.52 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We have investigated the gas content of a sample of several hundred AGN host galaxies at z$<$1 and compared it with a sample of inactive galaxies, matched in bins of stellar mass and redshift. Gas masses have been inferred from the dust masses, obtained by stacked Herschel far-IR and sub-mm data in the GOODS and COSMOS fields, under reasonable assumptions and metallicity scaling relations for the dust-to-gas ratio. We find that AGNs are on average hosted in galaxies much more gas rich than inactive galaxies. In the vast majority of stellar mass bins, the average gas content of AGN hosts is higher than in inactive galaxies. The difference is up to a factor of ten higher in low stellar mass galaxies, with a significance of 6.5$\sigma$. In almost half of the AGN sample the gas content is three times higher than in the control sample of inactive galaxies. Our result strongly suggests that the probability of having an AGN activated is simply driven by the amount of gas in the host galaxy; this can be explained in simple terms of statistical probability of having a gas cloud falling into the gravitational potential of the black hole. The increased probability of an AGN being hosted by a star-forming galaxy, identified by previous works, may be a consequence of the relationship between gas content and AGN activity, found in this paper, combined with the Schmidt-Kennicutt law for star formation.
    03/2014;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We study a hundred of galaxies from the spectroscopic Sloan Digital Sky Survey with individual detections in the Far-Infrared Herschel PACS bands (100 or 160 $\mu$m) and in the GALEX Far-UltraViolet band up to z$\sim$0.4 in the COSMOS and Lockman Hole fields. The galaxies are divided into 4 spectral and 4 morphological types. For the star forming and unclassifiable galaxies we calculate dust extinctions from the UV slope, the H$\alpha$/H$\beta$ ratio and the $L_{\rm IR}/L_{\rm UV}$ ratio. There is a tight correlation between the dust extinction and both $L_{\rm IR}$ and metallicity. We calculate SFR$_{total}$ and compare it with other SFR estimates (H$\alpha$, UV, SDSS) finding a very good agreement between them with smaller dispersions than typical SFR uncertainties. We study the effect of mass and metallicity, finding that it is only significant at high masses for SFR$_{H\alpha}$. For the AGN and composite galaxies we find a tight correlation between SFR and L$_{IR}$ ($\sigma\sim$0.29), while the dispersion in the SFR - L$_{UV}$ relation is larger ($\sigma\sim$0.57). The galaxies follow the prescriptions of the Fundamental Plane in the M-Z-SFR space.
    03/2014; 441(1).
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We study a sample of Herschel-PACS selected galaxies within the GOODS-South and the COSMOS fields in the framework of the PACS Evolutionary Probe (PEP) project. Starting from the rich multi-wavelength photometric data-sets available in both fields, we perform a broad-band Spectral Energy Distribution (SED) decomposition to disentangle the possible active galactic nucleus (AGN) contribution from that related to the host galaxy. We find that 37 per cent of the Herschel-selected sample shows signatures of nuclear activity at the 99 per cent confidence level. The probability to reveal AGN activity increases for bright ($L_{\rm 1-1000} > 10^{11} \rm L_{\odot}$) star-forming galaxies at $z>0.3$, becoming about 80 per cent for the brightest ($L_{\rm 1-1000} > 10^{12} \rm L_{\odot}$) infrared (IR) galaxies at $z \geq 1$. Finally, we reconstruct the AGN bolometric luminosity function and the super-massive black hole growth rate across cosmic time up to $z \sim 3$ from a Far-Infrared (FIR) perspective. This work shows general agreement with most of the panchromatic estimates from the literature, with the global black hole growth peaking at $z \sim 2$ and reproducing the observed local black hole mass density with consistent values of the radiative efficiency $\epsilon_{\rm rad}$ ($\sim$0.07).
    01/2014; 439(3).
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We report ALMA Cycle 0 observations at 1.3mm of LESS J033229.4-275619 (XID403), an Ultraluminous Infrared Galaxy at $z=4.75$ in the Chandra Deep Field South hosting a Compton-thick QSO. The source is not resolved in our data at a resolution of $\sim$0.75 arcsec, placing an upper-limit of 2.5 kpc to the half-light radius of the continuum emission from heated-dust. After deconvolving for the beam size, however, we found a $\sim3\sigma$ indication of an intrinsic source size of $0.27\pm0.08$ arcsec (Gaussian FWHM), which would correspond to $r_{half}\sim0.9\pm0.3$ kpc. We build the far-IR SED of XID403 by combining datapoints from both ALMA and Herschel and fit it with a modified blackbody spectrum. For the first time, we measure the dust temperature $T_d=58.5\pm5.3$ K in this system, which is comparable to what has been observed in other high-z submillimeter galaxies. The measured star formation rate is SFR=$1020\pm150$ $M_{\odot}$ yr$^{-1}$, in agreement with previous estimates at lower S/N. Based on the measured SFR and source size, we constrain the SFR surface density to be $\Sigma_{SFR}>26\;M_{\odot}$yr$^{-1}$kpc$^{-2}$ ($\sim200\;M_{\odot}$yr$^{-1}$kpc$^{-2}$ for $r_{half}\sim0.9$ kpc). The compactness of this starburst is comparable to what has been observed in other local and high-z starburst galaxies. If the gas mass measured from previous [CII] and CO(2-1) observations at low resolution is confined within the same dust region, assuming $r_{half}\sim0.9\pm0.3$ kpc, this would produce a column density of $N_H\sim0.3-1.1\times10^{24}$cm$^{-2}$ towards the central SMBH, similar to the column density of $\approx1.4\times10^{24}$cm$^{-2}$ measured from the X-rays. Then, in principle, if both gas and dust were confined on sub-kpc scales, this would be sufficient to produce the observed X-ray column density without any need of a pc-scale absorber [abridged].
    Astronomy and Astrophysics 12/2013; 562. · 5.08 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Infrared observations of high-z quasar (QSO) hosts indicate the presence of large masses of dust in the early universe. When combined with other observables, such as neutral gas masses and star formation rates, the dust content of z~6 QSO hosts may help constraining their star formation history. We have collected a database of 58 sources from the literature discovered by various surveys and observed in the FIR. We have interpreted the available data by means of chemical evolution models for forming proto-spheroids, investigating the role of the major parameters regulating star formation and dust production. For a few systems, given the derived small dynamical masses, the observed dust content can be explained only assuming a top-heavy initial mass function, an enhanced star formation efficiency and an increased rate of dust accretion. However, the possibility that, for some systems, the dynamical mass has been underestimated cannot be excluded. If this were the case, the dust mass can be accounted for by standard model assumptions. We provide predictions regarding the abundance of the descendants of QSO hosts; albeit rare, such systems should be present and detectable by future deep surveys such as Euclid already at z>4.
    12/2013; 438(4).
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We use deep Herschel PACS and SPIRE observations in GOODSS, GOODSN and COSMOS to estimate the average dust mass (Mdust) of galaxies on a redshift-stellar mass (Mstar)-SFR grid. We study the scaling relations between Mdust, Mstar and SFR at z<=2.5. No clear evolution of Mdust is observed at fixed SFR and Mstar. We find a tight correlation between SFR and Mdust, likely a consequence of the Schmidt-Kennicutt (S-K) law. The Mstar-Mdust correlation observed by previous works flattens or sometimes disappears when fixing the SFR. Most of it likely derives from the combination of the Mdust-SFR and Mstar-SFR correlations. We then investigate the gas content as inferred by converting Mdust by assuming that the dust/gas ratio scales linearly with the gas metallicity. All galaxies in the sample follow, within uncertainties, the same SFR-Mgas relation (integrated S-K law), which broadly agrees with CO-based results for the bulk of the population, despite the completely different approaches. The majority of galaxies at z~2 form stars with an efficiency (SFE=SFR/Mgas) ~5 times higher than at z~0. It is not clear what fraction of such variation is an intrinsic redshift evolution and what fraction arises from selection effects. The gas fraction (fgas) decreases with Mstar and increases with SFR, and does not evolve with z at fixed Mstar and SFR. We explain these trends by introducing a universal relation between fgas, Mstar and SFR, non-evolving out to z~2.5. Galaxies move across this relation as their gas content evolves in time. We use the 3D fundamental fgas-Mstar-SFR relation and the redshift evolution of the Main Sequence to estimate the evolution of fgas in the average population of galaxies as a function of z and Mstar, and we find evidence a downsizing scenario.
    Astronomy and Astrophysics 11/2013; 562. · 5.08 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: [Abridged] We study the evolution of the dust temperatures of galaxies in the SFR-M* plane up to z~2 using observations from the Herschel Space Observatory. Starting from a sample of galaxies with reliable star-formation rates (SFRs), stellar masses (M*) and redshift estimates, we grid the SFR-M* parameter space in several redshift ranges and estimate the mean Tdust of each SFR-M*-z bin. Dust temperatures are inferred using the stacked far-infrared flux densities of our SFR-M*-z bins. At all redshifts, Tdust increases with infrared luminosities (LIR), specific SFRs (SSFR; i.e., SFR/M*) and distances with respect to the main sequence (MS) of the SFR-M* plane (i.e., D_SSFR_MS=log[SSFR(galaxy)/SSFR_MS(M*,z)]). The Tdust-SSFR and Tdust-D_SSFR_MS correlations are statistically more significant than the Tdust-LIR one. While the slopes of these three correlations are redshift-independent, their normalizations evolve from z=0 and z~2. We convert these results into a recipe to derive Tdust from SFR, M* and z. The existence of a strong Tdust-D_SSFR_MS correlation provides us with information on the dust and gas content of galaxies. (i) The slope of the Tdust-D__SSFR_MS correlation can be explained by the increase of the star-formation efficiency (SFE; SFR/Mgas) with D_SSFR_MS as found locally by molecular gas studies. (ii) At fixed D_SSFR_MS, the constant Tdust observed in galaxies probing large ranges in SFR and M* can be explained by an increase or decrease of the number of star-forming regions with comparable SFE enclosed in them. (iii) At high redshift, the normalization towards hotter temperature of the Tdust-D_SSFR_MS correlation can be explained by the decrease of the metallicities of galaxies or by the increase of the SFE of MS galaxies. All these results support the hypothesis that the conditions prevailing in the star-forming regions of MS and far-above-MS galaxies are different.
    11/2013;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We study the incidence of nuclear obscuration on a complete sample of 1310 AGN selected on the basis of their rest-frame 2-10 keV X-ray flux from the XMM-COSMOS survey, in the redshift range 0.3<z<3.5. We classify the AGN as obscured or un-obscured on the basis of either the optical spectral properties and the overall SED or the shape of the X-ray spectrum. The two classifications agree in about 70% of the objects, and the remaining 30% can be further subdivided into two distinct classes: at low luminosities X-ray un-obscured AGN do not always show signs of broad lines or blue/UV continuum emission in their optical spectra, most likely due to galaxy dilution effects; at high luminosities broad line AGN may have absorbed X-ray spectra, which hints at an increased incidence of small-scale (sub-parsec) dust-free obscuration. We confirm that the fraction of obscured AGN is a decreasing function of the intrinsic X-ray luminosity, while the incidence of absorption shows significant evolution only for the most luminous AGN, which appear to be more commonly obscured at higher redshift. We find no significant difference between the mean stellar masses and star formation rates of obscured and un-obscured AGN hosts. We conclude that the physical state of the medium responsible for obscuration in AGN is complex, and mainly determined by the radiation environment (nuclear luminosity) in a small region enclosed within the gravitational sphere of influence of the central black hole, but is largely insensitive to the wider scale galactic conditions.
    Monthly Notices of the Royal Astronomical Society 11/2013; 437(4). · 5.52 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We investigate the evolution of the star formation rate (SFR)-density relation in the Extended Chandra Deep Field South (ECDFS) and the Great Observatories Origin Deep Survey (GOODS) fields up to z~1.6. In addition to the "traditional method", in which the environment is defined according to a statistical measurement of the local galaxy density, we use a "dynamical" approach, where galaxies are classified according to three different environment regimes: group, "filament-like", and field. Both methods show no evidence of a SFR-density reversal. Moreover, group galaxies show a mean SFR lower than other environments up to z~1, while at earlier epochs group and field galaxies exhibit consistent levels of star formation (SF) activity. We find that processes related to a massive dark matter halo must be dominant in the suppression of the SF below z~1, with respect to purely density-related processes. We confirm this finding by studying the distribution of galaxies in different environments with respect to the so-called Main Sequence (MS) of star-forming galaxies. Galaxies in both group and "filament-like" environments preferentially lie below the MS up to z~1, with group galaxies exhibiting lower levels of star-forming activity at a given mass. At z>1, the star-forming galaxies in groups reside on the MS. Groups exhibit the highest fraction of quiescent galaxies up to z~1, after which group, "filament-like", and field environments have a similar mix of galaxy types. We conclude that groups are the most efficient locus for star-formation quenching. Thus, a fundamental difference exists between bound and unbound objects, or between dark matter haloes of different masses.
    Monthly Notices of the Royal Astronomical Society 10/2013; 437(1). · 5.52 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: This is the first paper of a series aiming at investigating galaxy formation and evolution in the giant-void class of the Lemaitre-Tolman-Bondi (LTB) models that best fits current cosmological observations. Here we investigate the Luminosity Function (LF) methodology, and how its estimates would be affected by a change on the cosmological model assumed in its computation. Are the current observational constraints on the allowed Cosmology enough to yield robust LF results? We use the far-infrared source catalogues built on the observations performed with the Herschel/PACS instrument, and selected as part of the PACS evolutionary probe (PEP) survey. Schechter profiles are obtained in redshift bins up to z approximately 4, assuming comoving volumes in both the standard model, that is, Friedmann-Lemaitre-Robertson-Walker metric with a perfect fluid energy-momentum tensor, and non-homogeneous LTB dust models, parametrized to fit the current combination of results stemming from the observations of supernovae Ia, the cosmic microwave background, and baryonic acoustic oscillations. We find that the luminosity functions computed assuming both the standard model and LTB void models show in general good agreement. However, the faint-end slope in the void models shows a significant departure from the standard model up to redshift 0.4. We demonstrate that this result is not artificially caused by the used LF estimator which turns out to be robust under the differences in matter-energy density profiles of the models. The differences found in the LF slopes at the faint end are due to variation in the luminosities of the sources, which depend on the geometrical part of the model. It follows that either the standard model is over-estimating the number density of faint sources or the void models are under-estimating it.
    Astronomy and Astrophysics 08/2013; · 5.08 Impact Factor

Publication Stats

978 Citations
465.12 Total Impact Points

Institutions

  • 2000–2014
    • University of Bologna
      • Department of Physics and Astronomy DIFA
      Bolonia, Emilia-Romagna, Italy
  • 2009–2013
    • Università degli Studi di Siena
      Siena, Tuscany, Italy
  • 2012
    • Max Planck Institute for Extraterrestrial Physics
      Arching, Bavaria, Germany
    • The University of Edinburgh
      • Institute for Astronomy (IfA)
      Edinburgh, Scotland, United Kingdom
    • University of Sussex
      • Astronomy Centre
      Brighton, England, United Kingdom
  • 2001–2012
    • The Astronomical Observatory of Brera
      Merate, Lombardy, Italy
  • 2011
    • Instituto de Astrofísica de Canarias
      San Cristóbal de La Laguna, Canary Islands, Spain
    • The University of Tokyo
      • Institute for the Physics and Mathematics of the Universe (IPMU)
      Tokyo, Tokyo-to, Japan
  • 2003–2008
    • National Institute of Astrophysics
      Roma, Latium, Italy