Ai-Sun Kelly Tseng

Harvard Medical School, Boston, Massachusetts, United States

Are you Ai-Sun Kelly Tseng?

Claim your profile

Publications (2)13.88 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Signaling via the receptor tyrosine kinase (RTK)/Ras pathway promotes tissue growth during organismal development and is increased in many cancers [1]. It is still not understood precisely how this pathway promotes cell growth (mass accumulation). In addition, the RTK/Ras pathway also functions in cell survival, cell-fate specification, terminal differentiation, and progression through mitosis [2-7]. An important question is how the same canonical pathway can elicit strikingly different responses in different cell types. Here, we show that the HMG-box protein Capicua (Cic) restricts cell growth in Drosophila imaginal discs, and its levels are, in turn, downregulated by Ras signaling. Moreover, unlike normal cells, the growth of cic mutant cells is undiminished in the complete absence of a Ras signal. In addition to a general role in growth regulation, the importance of cic in regulating cell-fate determination downstream of Ras appears to vary from tissue to tissue. In the developing eye, the analysis of cic mutants shows that the functions of Ras in regulating growth and cell-fate determination are separable. Thus, the DNA-binding protein Cic is a key downstream component in the pathway by which Ras regulates growth in imaginal discs.
    Current Biology 04/2007; 17(8):728-33. · 9.49 Impact Factor
  • Source
    Ai-Sun Kelly Tseng, Iswar K Hariharan
    [Show abstract] [Hide abstract]
    ABSTRACT: We screened for genes that, when overexpressed in the proliferating cells of the eye imaginal disc, result in a reduction in the size of the adult eye. After crossing the collection of 2296 EP lines to the ey-GAL4 driver, we identified 46 lines, corresponding to insertions in 32 different loci, that elicited a small eye phenotype. These lines were classified further by testing for an effect in postmitotic cells using the sev-GAL4 driver, by testing for an effect in the wing using en-GAL4, and by testing for the ability of overexpression of cycE to rescue the small eye phenotype. EP lines identified in the screen encompass known regulators of eye development including hh and dpp, known genes that have not been studied previously with respect to eye development, as well as 19 novel ORFs. Lines with insertions near INCENP, elB, and CG11518 were characterized in more detail with respect to changes in growth, cell-cycle phasing, and doubling times that were elicited by overexpression. RNAi-induced phenotypes were also analyzed in SL2 cells. Thus overexpression screens can be combined with RNAi experiments to identify and characterize new regulators of growth and cell proliferation.
    Genetics 10/2002; 162(1):229-43. · 4.39 Impact Factor