Shin Watanabe

Japan Aerospace Exploration Agency, Chōfu, Tōkyō, Japan

Are you Shin Watanabe?

Claim your profile

Publications (76)97.72 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: Ultra-fast outflows (UFOs) are seen in many AGN, giving a possible mode for AGN feedback onto the host galaxy. However, the mechanism(s) for the launch and acceleration of these outflows are currently unknown, with UV line driving apparently strongly disfavoured as the material along the line of sight is so highly ionised that it has no UV transitions. We revisit this issue using the Suzaku X-ray data from PDS 456, an AGN with the most powerful UFO seen in the local Universe. We explore conditions in the wind by developing a new 3-D Monte-Carlo code for radiation transport. The code only handles highly ionised ions, but the data show the ionisation state of the wind is high enough that this is appropriate, and this restriction makes it fast enough to explore parameter space. We reproduce the results of earlier work, confirming that the mass loss rate in the wind is around 30% of the inferred inflow rate through the outer disc. We show for the first time that UV line driving is likely to be a major contribution to the wind acceleration. The mass loss rate in the wind matches that predicted from a purely line driven system, and this UV absorption can take place out of the line of sight. Continuum driving should also play a role as the source is close to Eddington. This predicts that the most extreme outflows will be produced from the highest mass accretion rate flows onto high mass black holes, as observed.
    10/2014;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The Focusing Optics X-ray Solar Imager (FOXSI) sounding rocket payload flew for the first time on 2012 November 2, producing the first focused images of the Sun above 5 keV. To enable hard X-ray (HXR) imaging spectroscopy via direct focusing, FOXSI makes use of grazing-incidence replicated optics combined with fine-pitch solid-state detectors. On its first flight, FOXSI observed several targets that included active regions, the quiet Sun, and a GOES-class B2.7 microflare. This Letter provides an introduction to the FOXSI instrument and presents its first solar image. These data demonstrate the superiority in sensitivity and dynamic range that is achievable with a direct HXR imager with respect to previous, indirect imaging methods, and illustrate the technological readiness for a spaceborne mission to observe HXRs from solar flares via direct focusing optics.
    The Astrophysical Journal Letters 09/2014; 793(2):L32. · 6.35 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The Hard X-ray Imager and the Soft Gamma-ray Detector, onboard the 6th Japanese X-ray satellite ASTRO-H, aim at unprecedentedly-sensitive observations in the 5–80 keV and 40–600 keV bands, respectively. Because their main sensors are composed of a number of semi-conductor devices, which need to be operated in a temperature of −20 to −15 • C, heat generated in the sensors must be efficiently transported outwards by thermal conduction. For this purpose, we performed thermal design, with the following three steps. First, we additionally included thermally-conductive parts, copper poles and graphite sheets. Second, constructing a thermal mathematical model of the sensors, we estimated temperature distributions in thermal equilibria. Since the model had rather large uncertainties in contact thermal conductions, an accurate thermal dummy was constructed as our final step. Vacuum measurement with the dummy successfully reduced the conductance uncertainties. With these steps, we confirmed that our thermal design of the main sensors satisfies the temperature requirement.
    Proc SPIE 07/2014; 9144(Space Telescopes and Instrumentation 2014: Ultraviolet to Gamma Ray):91445E.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We study the image reconstruction problem of Compton cameras which consists of semiconductor detectors. The image reconstruction is formulated as a statistical estimation problem. We employ the bin-mode estimation (BME) and extend an existing framework for the Compton camera with multiple scatterers and absorbers. Two estimation algorithms are proposed in this paper. One is an accelerated EM algorithm for the maximum likelihood estimation (MLE) and the other is a modified EM algorithm for the maximum a posteriori (MAP) estimation. Numerical simulations demonstrate the potential of the proposed methods.
    12/2013; 760.
  • Goro Sato, Shin Watanabe
    11/2013; 57(2).
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We develop a Monte Carlo Comptonization model for the X-ray spectrum of accretion-powered pulsars. Simple, spherical, thermal Comptonization models give harder spectra for higher optical depth, while the observational data from Vela X-1 show that the spectra are harder at higher luminosity. This suggests a physical interpretation where the optical depth of the accreting plasma increases with mass accretion rate. We develop a detailed Monte-Carlo model of the accretion flow, including the effects of the strong magnetic field ($\sim 10^{12}$ G) both in geometrically constraining the flow into an accretion column, and in reducing the cross section. We treat bulk-motion Comptonization of the infalling material as well as thermal Comptonization. These model spectra can match the observed broad-band {\it Suzaku} data from Vela X-1 over a wide range of mass accretion rates. The model can also explain the so-called "low state", in which the uminosity decreases by an order of magnitude. Here, thermal Comptonization should be negligible, so the spectrum instead is dominated by bulk-motion Comptonization.
    The Astrophysical Journal 11/2013; 780(1). · 6.73 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Hard X-ray Imager (HXI) and Soft Gamma-ray Detector (SGD) onboard the 6th Japanese X-ray satellite, ASTRO–H, utilize double-sided silicon strip detectors (DSSD) and pixel array-type silicon sensors (Si-pad), respectively. The DSSD with a 3.4 cm×3.4 cm area has an imaging capability in the lower energy band for the HXI covering 5–80 keV. The Si-pad consists of 16×16 pixels with a 5.4 cm×5.4 cm area and measures a photon direction with the Compton kinematics in 10–600 keV. Since the ASTRO–H will be operated in a low earth orbit, these detectors will be damaged by irradiation of cosmic-ray protons mainly in the South Atlantic Anomaly. In order to evaluate damage effects of the sensors, we have carried out irradiation tests with 150 MeV proton beams and 60Co gamma-rays with a total dose of 10–20 years irradiation level. In both experiments, the leakage current has increased by ∼0.2−−1.1nA/cm2 under an expected operation temperature at −15 °C, which resulted in the noise level within a tolerance of 20 years. In this report, we present a summary of the basic performance of silicon detectors, and radiation effects on them by the irradiation tests.
    Nuclear Instruments and Methods in Physics Research Section A Accelerators Spectrometers Detectors and Associated Equipment 04/2013; 699. · 1.14 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We have analyzed the time variability of the wide-band X-ray spectrum of Vela X-1, the brightest wind-fed accreting neutron star, on a short timescale of 2 ks by using {\it Suzaku} observations with an exposure of 100 ks. During the observation, the object showed strong variability including several flares and so-called "low states", in which the X-ray luminosity decreases by an order of magnitude. Although the spectral hardness increases with the X-ray luminosity, the majority of the recorded flares do not show any significant changes of circumstellar absorption. However, a sign of heavy absorption was registered immediately before one short flare that showed a significant spectral hardening. In the low states, the flux level is modulated with the pulsar spin period, indicating that even at this state the accretion flow reaches the close proximity of the neutron star. Phenomenologically, the broad-band X-ray spectra, which are integrated over the entire spin phase, are well represented by the "NPEX" function (a combination of negative and positive power laws with an exponential cutoff by a common folding energy) with a cyclotron resonance scattering feature at 50 keV. Fitting of the data allowed us to infer a correlation between the photon index and X-ray luminosity. Finally, the circumstellar absorption shows a gradual increase in the orbital phase interval 0.25--0.3, which can be interpreted as an impact of a bow shock imposed by the motion of the compact object in the supersonic stellar wind.
    The Astrophysical Journal 04/2013; 767(1). · 6.73 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Purpose:To develop a silicon (Si) and cadmium telluride (CdTe) imaging Compton camera for biomedical application on the basis of technologies used for astrophysical observation and to test its capacity to perform three-dimensional (3D) imaging.Materials and Methods:All animal experiments were performed according to the Animal Care and Experimentation Committee (Gunma University, Maebashi, Japan). Flourine 18 fluorodeoxyglucose (FDG), iodine 131 ((131)I) methylnorcholestenol, and gallium 67 ((67)Ga) citrate, separately compacted into micro tubes, were inserted subcutaneously into a Wistar rat, and the distribution of the radioisotope compounds was determined with 3D imaging by using the Compton camera after the rat was sacrificed (ex vivo model). In a separate experiment, indium 111((111)In) chloride and (131)I-methylnorcholestenol were injected into a rat intravenously, and copper 64 ((64)Cu) chloride was administered into the stomach orally just before imaging. The isotope distributions were determined with 3D imaging after sacrifice by means of the list-mode-expectation-maximizing-maximum-likelihood method.Results:The Si/CdTe Compton camera demonstrated its 3D multinuclear imaging capability by separating out the distributions of FDG, (131)I-methylnorcholestenol, and (67)Ga-citrate clearly in a test-tube-implanted ex vivo model. In the more physiologic model with tail vein injection prior to sacrifice, the distributions of (131)I-methylnorcholestenol and (64)Cu-chloride were demonstrated with 3D imaging, and the difference in distribution of the two isotopes was successfully imaged although the accumulation on the image of (111)In-chloride was difficult to visualize because of blurring at the low-energy region.Conclusion:The Si/CdTe Compton camera clearly resolved the distribution of multiple isotopes in 3D imaging and simultaneously in the ex vivo model.© RSNA, 2013.
    Radiology 02/2013; · 6.34 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: We have developed a new Compton camera based on silicon (Si) and cadmium telluride (CdTe) semiconductor double-sided strip detectors (DSDs). The camera consists of a 500-μm-thick500-μm-thick Si-DSD and four layers of 750-μm-thick750-μm-thick CdTe-DSDs all of which have common electrode configuration segmented into 128 strips on each side with pitches of 250μm. In order to realize high angular resolution and to reduce size of the detector system, a stack of DSDs with short stack pitches of 4 mm is utilized to make the camera. Taking advantage of the excellent energy and position resolutions of the semiconductor devices, the camera achieves high angular resolutions of 4.5° at 356 keV and 3.5° at 662 keV. To obtain such high resolutions together with an acceptable detection efficiency, we demonstrate data reduction methods including energy calibration using Compton scattering continuum and depth sensing in the CdTe-DSD. We also discuss imaging capability of the camera and show simultaneous multi-energy imaging.
    Nuclear Instruments and Methods in Physics Research Section A Accelerators Spectrometers Detectors and Associated Equipment 12/2012; 695:179–183. · 1.14 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The joint JAXA/NASA ASTRO-H mission is the sixth in a series of highly successful X-ray missions initiated by the Institute of Space and Astronautical Science (ISAS). ASTRO-H will investigate the physics of the high-energy universe via a suite of four instruments, covering a very wide energy range, from 0.3 keV to 600 keV. These instruments include a high-resolution, high-throughput spectrometer sensitive over 0.3-2 keV with high spectral resolution of Delta E < 7 eV, enabled by a micro-calorimeter array located in the focal plane of thin-foil X-ray optics; hard X-ray imaging spectrometers covering 5-80 keV, located in the focal plane of multilayer-coated, focusing hard X-ray mirrors; a wide-field imaging spectrometer sensitive over 0.4-12 keV, with an X-ray CCD camera in the focal plane of a soft X-ray telescope; and a non-focusing Compton-camera type soft gamma-ray detector, sensitive in the 40-600 keV band. The simultaneous broad bandpass, coupled with high spectral resolution, will enable the pursuit of a wide variety of important science themes.
    10/2012;
  • [Show abstract] [Hide abstract]
    ABSTRACT: MeV and sub-MeV energy band from ~200 keV to ~2 MeV contains rich information of high-energy phenomena in the universe. The CAST (Compton Telescope for Astro and Solar Terrestrial) mission is planned to be launched at the end of 2010s, and aims at providing all-sky map in this energy-band for the first time. It is made of a semiconductor Compton telescope utilizing Si as a scatterer and CdTe as an absorber. CAST provides allsky sub-MeV polarization map for the first time, as well. The Compton telescope technology is based on the design used in the Soft Gamma-ray Detector (SGD) onboard ASTRO-H, characterized by its tightly stacked semiconductor layers to obtain high Compton reconstruction efficiency. The CAST mission is currently planned as a candidate for the small scientific satellite series in ISAS/JAXA, weighting about 500 kg in total. Scalable detector design enables us to consider other options as well. Scientific outcome of CAST is wide. It will provide new information from high-energy sources, such as AGN and/or its jets, supernova remnants, magnetors, blackhole and neutron-star binaries and others. Polarization map will tell us about activities of jets and reflections in these sources, as well. In addition, CAST will simultaneously observe the Sun, and depending on its attitude, the Earth.
    Proc SPIE 09/2012;
  • [Show abstract] [Hide abstract]
    ABSTRACT: The imaging and spectral performance of CdTe double-sided strip detectors (CdTe-DSDs) was evaluated for the ASTRO-H mission. The charcterized CdTe-DSDs have a strip pitch of 0.25 mm, an imaging area of 3.2 cm × 3.2 cm and a thickness of 0.75 mm. The detector was successfully operated at a temperature of -20°C and with an applied bias voltage of 250 V. By using two-strip events as well as one-strip events for the event reconstruction, a good energy resolution of 2.0 keV at 59.5 keV and a sub-strip spatial resolution was achieved. The hard X-ray and gamma-ray response of CdTe-DSDs is complex due to the properties of CdTe and the small pixel effect. Therefore, one of the issues to investigate is the response of the CdTe-DSD. In order to investigate the spatial dependence of the detector response, we performed fine beam scan experiments at SPring-8, a synchrotron radiation facility. From these experiments, the depth structure of the electric field was determined as well as properties of carriers in the detector and successfully reproduced the experimental data with simulated spectra.
    Proc SPIE 09/2012;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We describe a new method for estimating the beam range in heavy-ion radiation therapy by measuring the ion beam bremsstrahlung. We experimentally confirm that the secondary electron bremsstrahlung process provides the dominant bremsstrahlung contribution. A Monte Carlo simulation shows that the number of background photons from annihilation gamma rays is about 1% of the bremsstrahlung strength in the low-energy region used in our estimation (63-68 keV). Agreement between the experimental results and the theoretical prediction for the characteristic shape of the bremsstrahlung spectrum validates the effectiveness of our new method in estimating the ion beam range.
    Physics in Medicine and Biology 04/2012; 57(10):2843-56. · 2.70 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: By using a prototype Compton camera consisting of silicon (Si) and cadmium telluride (CdTe) semiconductor detectors, originally developed for the ASTRO-H satellite mission, an experiment involving imaging multiple radiopharmaceuticals injected into a living mouse was conducted to study its feasibility for medical imaging. The accumulation of both iodinated $(^{131}{\rm I})$ methylnorcholestenol and $^{85}$Sr into the mouse's organs was simultaneously imaged by the prototype. This result implies that the Compton camera is expected to become a multi-probe tracker available in nuclear medicine and small animal imaging.
    IEEE Transactions on Nuclear Science 01/2012; 59(1):70-76. · 1.22 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Strong iron fluorescence at 6.4 keV and hard-X-ray emissions from giant molecular clouds in the Galactic center region have been interpreted as reflections of a past outburst of the Sgr A* supermassive black hole. Careful treatment of multiple interactions of photons in a complicated geometry is essential to modeling the reprocessed emissions from the dense clouds. We develop a new calculation framework of X-ray reflection from molecular clouds based on Monte Carlo simulations for accurate interpretation of high-quality observational data. By utilizing this simulation framework, we present the first calculations of morphologies and spectra of the reflected X-ray emission for several realistic models of Sgr B2, which is the most massive molecular cloud in our Galaxy. The morphology of scattered hard X-rays above 20 keV is significantly different from that of iron fluorescence due to their large penetrating power into dense regions of the cloud, probing the structure of the cloud. High-resolution spectra provide quantitative evaluation of the iron line including its Compton shoulder to constrain the mass and the chemical composition of the cloud as well as the luminosity of the illuminating source. These predictions can be checked in the near future with future X-ray missions such as NuStar (hard X-rays) and ASTRO-H (both iron lines and hard X-rays).
    The Astrophysical Journal 10/2011; 740(2). · 6.73 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The Focusing Optics x-ray Solar Imager (FOXSI) is a sounding rocket payload funded under the NASA Low Cost Access to Space program to test hard x-ray (HXR) focusing optics and position-sensitive solid state detectors for solar observations. Today's leading solar HXR instrument, the Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI) provides excellent spatial (2 arcseconds) and spectral (1 keV) resolution. Yet, due to its use of an indirect imaging system, the derived images have a low dynamic range (typically <10) and sensitivity. These limitations make it difficult to study faint x-ray sources in the solar corona which are crucial for understanding the particle acceleration processes which occur there. Grazing-incidence x-ray focusing optics combined with position-sensitive solid state detectors can overcome both of these limitations enabling the next breakthrough in understanding impulsive energy release on the Sun. The FOXSI project is led by the Space Sciences Laboratory at the University of California, Berkeley. The NASA Marshall Space Flight Center is responsible for the grazingincidence optics, while the Astro-H team at JAXA/ISAS has provided double-sided silicon strip detectors. FOXSI is a pathfinder for the next generation of solar hard x-ray spectroscopic imagers. Such observatories will be able to image the non-thermal electrons within the solar flare acceleration region, trace their paths through the corona, and provide essential quantitative measurements such as energy spectra, density, and energy content in accelerated electrons.
    Proc SPIE 09/2011;
  • 08/2011;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Improvements of in-orbit calibration of GSO scintillators in the Hard X-ray Detector on board Suzaku are reported. To resolve an apparent change of the energy scale of GSO which appeared across the launch for unknown reasons, consistent and thorough re-analyses of both pre-launch and in-orbit data have been performed. With laboratory experiments using spare hardware, the pulse height offset, corresponding to zero energy input, was found to change by ~0.5 of the full analog voltage scale, depending on the power supply. Furthermore, by carefully calculating all the light outputs of secondaries from activation lines used in the in-orbit gain determination, their energy deposits in GSO were found to be effectively lower, by several percent, than their nominal energies. Taking both these effects into account, the in-orbit data agrees with the on-ground measurements within ~5%, without employing the artificial correction introduced in the previous work (Kokubun et al. 2007). With this knowledge, we updated the data processing, the response, and the auxiliary files of GSO, and reproduced the HXD-PIN and HXD-GSO spectra of the Crab Nebula over 12-300 keV by a broken powerlaw with a break energy of ~110 keV.
    Publications- Astronomical Society of Japan 07/2011; 63. · 2.44 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Schottky CdTe diode detectors suffer from a polarization phenomenon, which is characterized by degradation of the spectral properties over time following exposure to high bias voltage. This is considered attributable to charge accumulation at deep acceptor levels. A Schottky CdTe diode was illuminated with an infrared light for a certain period during a bias operation, and two opposite behaviors emerged. The detector showed a recovery when illuminated after the bias-induced polarization had completely progressed. Conversely, when the detector was illuminated before the emergence of bias-induced polarization, the degradation of the spectral properties was accelerated. Interpretation of these effects and discussion on the energy level of deep acceptors are presented.
    Nuclear Instruments and Methods in Physics Research Section A Accelerators Spectrometers Detectors and Associated Equipment 01/2011; 652(1):149-152. · 1.14 Impact Factor

Publication Stats

451 Citations
97.72 Total Impact Points

Institutions

  • 2006–2014
    • Japan Aerospace Exploration Agency
      • Institute of Space and Astronautical Science (ISAS)
      Chōfu, Tōkyō, Japan
  • 2012
    • The Graduate University for Advanced Studies
      • Department of Space and Astronautical Science
      Миура, Kanagawa, Japan
  • 2011
    • Dublin Institute for Advanced Studies
      Dublin, Leinster, Ireland
  • 2004–2008
    • The University of Tokyo
      • Department of Physics
      Tokyo, Tokyo-to, Japan