Shin Watanabe

Japan Aerospace Exploration Agency, Chōfu, Tōkyō, Japan

Are you Shin Watanabe?

Claim your profile

Publications (84)119.41 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: The French Atomic Energy Commission (CEA), with the support of the European Space Agency (ESA), is partner of the Soft Gamma-Ray Detector (SGD) and the Hard X-ray Imager (HXI) onboard the 6th Japanese X-ray scientific satellite ASTRO-H (JAXA) initiated by the Institute of Space and Astronautical Science (ISAS). Both scientific instruments, one hosting a series of Compton Gamma Cameras and the other being a focal plane of a grazing incidence mirror telescope in the hard X-ray domain, are equipped with Cadmium Telluride based detectors. ASTRO-H will be operated in a Low Earth Orbit with a 31° inclination at ~550 km altitude, thus passing daily through the South Atlantic Anomaly radiation belt, a specially harsh environment where the detectors are suffering the effect of the interaction with trapped high energy protons. As CdTe detector performance might be affected by the irradiation, we investigate the effect of the accumulated proton fluence on their spectral response. To do so, we have characterized and irradiated representative samples of SGD and HXI detector under different conditions. The detectors in question, from ACRORAD, are single-pixels having a size of 2 mm by 2 mm and 750 µm thick. The Schottky contact is either made of an Indium or Aluminum for SGD and HXI respectively. We ran the irradiation test campaign at the Proton Irradiation Facility (PIF) at PSI, an ESA approved equipment to evaluate the radiation hardness of flight hardware. We simulated the proton flux expected on the sensors over the entire mission, and secondary neutrons flux due to primary proton interactions into the surrounding BGO active shielding. We eventually characterized the detector response evolution, emphasizing each detector spectral response as well as its stability by studying the so-called Polarization effect. The latter is provoking a spectral response degradation against time as a charge accumulation process occurs in Schottky type CdTe sensors. In this paper, we report on the test campaigns at PIF and will show up our experimental setup. We will pursue describing the irradiation conditions associated with our GEANT 4 predictions and finally, we report the main results of our campaigns concluding that the proton effect does not severely affect the CdTe response neither the detector stability while the secondary neutrons might be more active to reduce the performance on the long run.
    Nuclear Instruments and Methods in Physics Research Section A Accelerators Spectrometers Detectors and Associated Equipment 01/2015; DOI:10.1016/j.nima.2015.01.062 · 1.32 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The joint JAXA/NASA ASTRO-H mission is the sixth in a series of highly successful X-ray missions developed by the Institute of Space and Astronautical Science (ISAS), with a planned launch in 2015. The ASTRO-H mission is equipped with a suite of sensitive instruments with the highest energy resolution ever achieved at E > 3 keV and a wide energy range spanning four decades in energy from soft X-rays to gamma-rays. The simultaneous broad band pass, coupled with the high spectral resolution of Delta E < 7 eV of the micro-calorimeter, will enable a wide variety of important science themes to be pursued. ASTRO-H is expected to provide breakthrough results in scientific areas as diverse as the large-scale structure of the Universe and its evolution, the behavior of matter in the gravitational strong field regime, the physical conditions in sites of cosmic-ray acceleration, and the distribution of dark matter in galaxy clusters at different redshifts.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Ultra-fast outflows (UFOs) are seen in many AGN, giving a possible mode for AGN feedback onto the host galaxy. However, the mechanism(s) for the launch and acceleration of these outflows are currently unknown, with UV line driving apparently strongly disfavoured as the material along the line of sight is so highly ionised that it has no UV transitions. We revisit this issue using the Suzaku X-ray data from PDS 456, an AGN with the most powerful UFO seen in the local Universe. We explore conditions in the wind by developing a new 3-D Monte-Carlo code for radiation transport. The code only handles highly ionised ions, but the data show the ionisation state of the wind is high enough that this is appropriate, and this restriction makes it fast enough to explore parameter space. We reproduce the results of earlier work, confirming that the mass loss rate in the wind is around 30% of the inferred inflow rate through the outer disc. We show for the first time that UV line driving is likely to be a major contribution to the wind acceleration. The mass loss rate in the wind matches that predicted from a purely line driven system, and this UV absorption can take place out of the line of sight. Continuum driving should also play a role as the source is close to Eddington. This predicts that the most extreme outflows will be produced from the highest mass accretion rate flows onto high mass black holes, as observed.
    Monthly Notices of the Royal Astronomical Society 10/2014; 446(1). DOI:10.1093/mnras/stu2095 · 5.23 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The Focusing Optics X-ray Solar Imager (FOXSI) sounding rocket payload flew for the first time on 2012 November 2, producing the first focused images of the Sun above 5 keV. To enable hard X-ray (HXR) imaging spectroscopy via direct focusing, FOXSI makes use of grazing-incidence replicated optics combined with fine-pitch solid-state detectors. On its first flight, FOXSI observed several targets that included active regions, the quiet Sun, and a GOES-class B2.7 microflare. This Letter provides an introduction to the FOXSI instrument and presents its first solar image. These data demonstrate the superiority in sensitivity and dynamic range that is achievable with a direct HXR imager with respect to previous, indirect imaging methods, and illustrate the technological readiness for a spaceborne mission to observe HXRs from solar flares via direct focusing optics.
    The Astrophysical Journal Letters 09/2014; 793(2):L32. DOI:10.1088/2041-8205/793/2/L32 · 5.60 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Recent progress in wide field of view or all-sky observations such as Swift/BAT hard X-ray monitor and Fermi GeV gamma-ray observatory has opened up a new era of time-domain high energy astro-physics addressing new insight in, e.g., particle acceleration in the universe. MeV coverage with comparable sensitivity, i.e. 1 ~ 10 mCrab is missing and a new MeV all-sky observatory is needed. These new MeV mission tend to be large, power- consuming and hence expensive, and its realization is yet to come. A compact sub-MeV (0.2-2 MeV) all-sky mission is proposed as a path finder for such mission. It is based on a Si/CdTe semiconductor Compton telescope technology employed in the soft gamma-ray detector onboard ASTRO-H, to be launched in to orbit on late 2015. The mission is kept as small as 0:5 X 0:5 X 0:4 m3, 150 kg in weight and 200 W in power in place of the band coverage above a few MeV, in favor of early realization as a sub-payload to other large platforms, such as the international space station.
    SPIE Astronomical Telescopes + Instrumentation; 07/2014
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The Hard X-ray Imager and the Soft Gamma-ray Detector, onboard the 6th Japanese X-ray satellite ASTRO-H, aim at unprecedentedly-sensitive observations in the 5–80 keV and 40–600 keV bands, respectively. Because their main sensors are composed of a number of semi-conductor devices, which need to be operated in a temperature of −20 to −15 • C, heat generated in the sensors must be efficiently transported outwards by thermal conduction. For this purpose, we performed thermal design, with the following three steps. First, we additionally included thermally-conductive parts, copper poles and graphite sheets. Second, constructing a thermal mathematical model of the sensors, we estimated temperature distributions in thermal equilibria. Since the model had rather large uncertainties in contact thermal conductions, an accurate thermal dummy was constructed as our final step. Vacuum measurement with the dummy successfully reduced the conductance uncertainties. With these steps, we confirmed that our thermal design of the main sensors satisfies the temperature requirement.
    Proceedings of SPIE - The International Society for Optical Engineering 07/2014; 9144(Space Telescopes and Instrumentation 2014: Ultraviolet to Gamma Ray):91445E. DOI:10.1117/12.2055379 · 0.20 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In very-high-spatial-resolution gamma-ray imaging applications, such as preclinical PET and SPECT, estimation of 3D interaction location inside the detector crystal can be used to minimize parallax error in the imaging system. In this work, we investigate the effect of bias voltage setting on depth-of-interaction (DOI) estimates for a semiconductor detector with a double-sided strip geometry. We first examine the statistical properties of the signals and develop expressions for likelihoods for given gamma-ray interaction positions. We use Fisher Information to quantify how well (in terms of variance) the measured signals can be used for DOI estimation with different bias-voltage settings. We performed measurements of detector response versus 3D position as a function of applied bias voltage by scanning with highly collimated synchrotron radiation at the Advanced Photon Source at Argonne National Laboratory. Experimental and theoretical results show that the optimum bias setting depends on whether or not the estimated event position will include the depth of interaction. We also found that for this detector geometry, the z-resolution changes with depth.
    IEEE Transactions on Nuclear Science 06/2014; 61(3):1243-1251. DOI:10.1109/TNS.2014.2317454 · 1.46 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We study the image reconstruction problem of Compton cameras which consists of semiconductor detectors. The image reconstruction is formulated as a statistical estimation problem. We employ the bin-mode estimation (BME) and extend an existing framework for the Compton camera with multiple scatterers and absorbers. Two estimation algorithms are proposed in this paper. One is an accelerated EM algorithm for the maximum likelihood estimation (MLE) and the other is a modified EM algorithm for the maximum a posteriori (MAP) estimation. Numerical simulations demonstrate the potential of the proposed methods.
    Nuclear Instruments and Methods in Physics Research Section A Accelerators Spectrometers Detectors and Associated Equipment 12/2013; 760. DOI:10.1016/j.nima.2014.05.081 · 1.32 Impact Factor
  • Conference Paper: Compton camera imaging
    [Show abstract] [Hide abstract]
    ABSTRACT: The goal of the Compton camera imaging is to visualize the gamma-ray intensity map. Here, we focus on the case where the gamma-ray sources are sufficiently far from the camera and propose a new reconstruction method for the Compton camera imaging. The method is called the bin-mode estimation (BME). The assumption is valid for astronomy applications. The method can be implemented easily, and numerical simulations show the proposed method provides sharp reconstructions.
    2013 Seventh International Conference on Sensing Technology (ICST); 12/2013
  • Goro Sato · Shin Watanabe
    Journal of the Vacuum Society of Japan 11/2013; 57(2). DOI:10.3131/jvsj2.57.57
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We develop a Monte Carlo Comptonization model for the X-ray spectrum of accretion-powered pulsars. Simple, spherical, thermal Comptonization models give harder spectra for higher optical depth, while the observational data from Vela X-1 show that the spectra are harder at higher luminosity. This suggests a physical interpretation where the optical depth of the accreting plasma increases with mass accretion rate. We develop a detailed Monte-Carlo model of the accretion flow, including the effects of the strong magnetic field ($\sim 10^{12}$ G) both in geometrically constraining the flow into an accretion column, and in reducing the cross section. We treat bulk-motion Comptonization of the infalling material as well as thermal Comptonization. These model spectra can match the observed broad-band {\it Suzaku} data from Vela X-1 over a wide range of mass accretion rates. The model can also explain the so-called "low state", in which the uminosity decreases by an order of magnitude. Here, thermal Comptonization should be negligible, so the spectrum instead is dominated by bulk-motion Comptonization.
    The Astrophysical Journal 11/2013; 780(1). DOI:10.1088/0004-637X/780/1/38 · 6.28 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Hard X-ray Imager (HXI) and Soft Gamma-ray Detector (SGD) onboard the 6th Japanese X-ray satellite, ASTRO–H, utilize double-sided silicon strip detectors (DSSD) and pixel array-type silicon sensors (Si-pad), respectively. The DSSD with a 3.4 cm×3.4 cm area has an imaging capability in the lower energy band for the HXI covering 5–80 keV. The Si-pad consists of 16×16 pixels with a 5.4 cm×5.4 cm area and measures a photon direction with the Compton kinematics in 10–600 keV. Since the ASTRO–H will be operated in a low earth orbit, these detectors will be damaged by irradiation of cosmic-ray protons mainly in the South Atlantic Anomaly. In order to evaluate damage effects of the sensors, we have carried out irradiation tests with 150 MeV proton beams and 60Co gamma-rays with a total dose of 10–20 years irradiation level. In both experiments, the leakage current has increased by ∼0.2−−1.1nA/cm2 under an expected operation temperature at −15 °C, which resulted in the noise level within a tolerance of 20 years. In this report, we present a summary of the basic performance of silicon detectors, and radiation effects on them by the irradiation tests.
    Nuclear Instruments and Methods in Physics Research Section A Accelerators Spectrometers Detectors and Associated Equipment 04/2013; 699. DOI:10.1016/j.nima.2012.05.088 · 1.32 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We have analyzed the time variability of the wide-band X-ray spectrum of Vela X-1, the brightest wind-fed accreting neutron star, on a short timescale of 2 ks by using {\it Suzaku} observations with an exposure of 100 ks. During the observation, the object showed strong variability including several flares and so-called "low states", in which the X-ray luminosity decreases by an order of magnitude. Although the spectral hardness increases with the X-ray luminosity, the majority of the recorded flares do not show any significant changes of circumstellar absorption. However, a sign of heavy absorption was registered immediately before one short flare that showed a significant spectral hardening. In the low states, the flux level is modulated with the pulsar spin period, indicating that even at this state the accretion flow reaches the close proximity of the neutron star. Phenomenologically, the broad-band X-ray spectra, which are integrated over the entire spin phase, are well represented by the "NPEX" function (a combination of negative and positive power laws with an exponential cutoff by a common folding energy) with a cyclotron resonance scattering feature at 50 keV. Fitting of the data allowed us to infer a correlation between the photon index and X-ray luminosity. Finally, the circumstellar absorption shows a gradual increase in the orbital phase interval 0.25--0.3, which can be interpreted as an impact of a bow shock imposed by the motion of the compact object in the supersonic stellar wind.
    The Astrophysical Journal 04/2013; 767(1). DOI:10.1088/0004-637X/767/1/70 · 6.28 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Purpose:To develop a silicon (Si) and cadmium telluride (CdTe) imaging Compton camera for biomedical application on the basis of technologies used for astrophysical observation and to test its capacity to perform three-dimensional (3D) imaging.Materials and Methods:All animal experiments were performed according to the Animal Care and Experimentation Committee (Gunma University, Maebashi, Japan). Flourine 18 fluorodeoxyglucose (FDG), iodine 131 ((131)I) methylnorcholestenol, and gallium 67 ((67)Ga) citrate, separately compacted into micro tubes, were inserted subcutaneously into a Wistar rat, and the distribution of the radioisotope compounds was determined with 3D imaging by using the Compton camera after the rat was sacrificed (ex vivo model). In a separate experiment, indium 111((111)In) chloride and (131)I-methylnorcholestenol were injected into a rat intravenously, and copper 64 ((64)Cu) chloride was administered into the stomach orally just before imaging. The isotope distributions were determined with 3D imaging after sacrifice by means of the list-mode-expectation-maximizing-maximum-likelihood method.Results:The Si/CdTe Compton camera demonstrated its 3D multinuclear imaging capability by separating out the distributions of FDG, (131)I-methylnorcholestenol, and (67)Ga-citrate clearly in a test-tube-implanted ex vivo model. In the more physiologic model with tail vein injection prior to sacrifice, the distributions of (131)I-methylnorcholestenol and (64)Cu-chloride were demonstrated with 3D imaging, and the difference in distribution of the two isotopes was successfully imaged although the accumulation on the image of (111)In-chloride was difficult to visualize because of blurring at the low-energy region.Conclusion:The Si/CdTe Compton camera clearly resolved the distribution of multiple isotopes in 3D imaging and simultaneously in the ex vivo model.© RSNA, 2013.
    Radiology 02/2013; DOI:10.1148/radiol.13121194 · 6.21 Impact Factor
  • The Journal of The Institute of Image Information and Television Engineers 01/2013; 67(3):197-201. DOI:10.3169/itej.67.197
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: By using a new Compton camera consisting of a silicon double-sided strip detector (Si-DSD) and a CdTe double-sided strip detector (CdTe-DSD), originally developed for the ASTRO-H satellite mission, an experiment involving imaging radioisotopes was conducted to study their feasibility for hotspot monitoring. In addition to the hotspot imaging already provided by commercial imaging systems, identification of various radioisotopes is possible thanks to the good energy resolution obtained by the semiconductor detectors. Three radioisotopes of Ba-133 (356 keV), Na-22 (511 keV) and Cs-137 (662 keV) were individually imaged by applying event selection in the energy window and the gamma-ray images were correctly overlapped by an optical picture. Detection efficiency of 1.68 x10(-4) (effective area : 1.7 x10(-3) cm(2)) and angular resolution of 3.8 degrees were obtained by stacking five detector modules for a 662 keV gamma ray. The higher detection efficiency required in specific use can be achieved by stacking more detector modules. (C) 2012 Published by Elsevier B.V. Selection and/or peer review under responsibility of the organizing committee for TIPP 11.
    Physics Procedia 12/2012; 37:859-866. DOI:10.1016/j.phpro.2012.04.096
  • [Show abstract] [Hide abstract]
    ABSTRACT: We have developed a new Compton camera based on silicon (Si) and cadmium telluride (CdTe) semiconductor double-sided strip detectors (DSDs). The camera consists of a 500-μm-thick500-μm-thick Si-DSD and four layers of 750-μm-thick750-μm-thick CdTe-DSDs all of which have common electrode configuration segmented into 128 strips on each side with pitches of 250μm. In order to realize high angular resolution and to reduce size of the detector system, a stack of DSDs with short stack pitches of 4 mm is utilized to make the camera. Taking advantage of the excellent energy and position resolutions of the semiconductor devices, the camera achieves high angular resolutions of 4.5° at 356 keV and 3.5° at 662 keV. To obtain such high resolutions together with an acceptable detection efficiency, we demonstrate data reduction methods including energy calibration using Compton scattering continuum and depth sensing in the CdTe-DSD. We also discuss imaging capability of the camera and show simultaneous multi-energy imaging.
    Nuclear Instruments and Methods in Physics Research Section A Accelerators Spectrometers Detectors and Associated Equipment 12/2012; 695:179–183. DOI:10.1016/j.nima.2011.12.061 · 1.32 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: We report the Suzaku observations of the high luminosity blazar SWIFT J0746.3+2548 (J0746) conducted in November 2005. This object, with z = 2.979, is the highest redshift source observed in the Suzaku Guaranteed Time Observer (GTO) period, is likely to show high gamma-ray flux peaking in the MeV range. As a result of the good photon statistics and high signal-to-noise ratio spectrum, the Suzaku observation clearly confirms that J0746 has an extremely hard spectrum in the energy range of 0.3–24 keV, which is well represented by a single power-law with a photon index of Γph ≃ 1.17 and Galactic absorption. The multiwavelength spectral energy distribution of J0746 shows two continuum components, and is well modeled assuming that the high-energy spectral component results from Comptonization of the broad-line region photons. In this paper we search for the bulk Compton spectral features predicted to be produced in the soft X-ray band by scattering external optical/UV photons by cold electrons in a relativistic jet. We discuss and provide constraints on the pair content resulting from the apparent absence of such features. Subject headings: galaxies:active, quasars:individual (J0746.3+2548), X-rays:galaxies
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The joint JAXA/NASA ASTRO-H mission is the sixth in a series of highly successful X-ray missions initiated by the Institute of Space and Astronautical Science (ISAS). ASTRO-H will investigate the physics of the high-energy universe via a suite of four instruments, covering a very wide energy range, from 0.3 keV to 600 keV. These instruments include a high-resolution, high-throughput spectrometer sensitive over 0.3-2 keV with high spectral resolution of Delta E < 7 eV, enabled by a micro-calorimeter array located in the focal plane of thin-foil X-ray optics; hard X-ray imaging spectrometers covering 5-80 keV, located in the focal plane of multilayer-coated, focusing hard X-ray mirrors; a wide-field imaging spectrometer sensitive over 0.4-12 keV, with an X-ray CCD camera in the focal plane of a soft X-ray telescope; and a non-focusing Compton-camera type soft gamma-ray detector, sensitive in the 40-600 keV band. The simultaneous broad bandpass, coupled with high spectral resolution, will enable the pursuit of a wide variety of important science themes.
    Proceedings of SPIE - The International Society for Optical Engineering 10/2012; DOI:10.1117/12.926190 · 0.20 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: MeV and sub-MeV energy band from ~200 keV to ~2 MeV contains rich information of high-energy phenomena in the universe. The CAST (Compton Telescope for Astro and Solar Terrestrial) mission is planned to be launched at the end of 2010s, and aims at providing all-sky map in this energy-band for the first time. It is made of a semiconductor Compton telescope utilizing Si as a scatterer and CdTe as an absorber. CAST provides allsky sub-MeV polarization map for the first time, as well. The Compton telescope technology is based on the design used in the Soft Gamma-ray Detector (SGD) onboard ASTRO-H, characterized by its tightly stacked semiconductor layers to obtain high Compton reconstruction efficiency. The CAST mission is currently planned as a candidate for the small scientific satellite series in ISAS/JAXA, weighting about 500 kg in total. Scalable detector design enables us to consider other options as well. Scientific outcome of CAST is wide. It will provide new information from high-energy sources, such as AGN and/or its jets, supernova remnants, magnetors, blackhole and neutron-star binaries and others. Polarization map will tell us about activities of jets and reflections in these sources, as well. In addition, CAST will simultaneously observe the Sun, and depending on its attitude, the Earth.
    Proceedings of SPIE - The International Society for Optical Engineering 09/2012; DOI:10.1117/12.926164 · 0.20 Impact Factor

Publication Stats

641 Citations
119.41 Total Impact Points

Institutions

  • 2005–2014
    • Japan Aerospace Exploration Agency
      • Institute of Space and Astronautical Science (ISAS)
      Chōfu, Tōkyō, Japan
  • 2004–2014
    • The University of Tokyo
      • Department of Physics
      Tōkyō, Japan
  • 2012
    • The Graduate University for Advanced Studies
      • Department of Space and Astronautical Science
      Миура, Kanagawa, Japan
  • 2011
    • Dublin Institute for Advanced Studies
      Dublin, Leinster, Ireland