L. Feretti

Princeton University, Princeton, New Jersey, United States

Are you L. Feretti?

Claim your profile

Publications (262)639.59 Total impact

  • Source
    [show abstract] [hide abstract]
    ABSTRACT: We present deep 1.1-3.1 GHz Australia Telescope Compact Array observations of the radio halo of the bullet cluster, 1E 0657-55.8. In comparison to existing images of this radio halo the detection in our images is at higher significance. The radio halo is as extended as the X-ray emission in the direction of cluster merger but is significantly less extended than the X-ray emission in the perpendicular direction. At low significance we detect a faint second peak in the radio halo close to the X-ray centroid of the smaller sub-cluster (the bullet) suggesting that, similarly to the X-ray emission, the radio halo may consist of two components. Finally, we find that the distinctive shape of the western edge of the radio halo traces out the X-ray detected bow shock. The radio halo morphology and the lack of strong point-to-point correlations between radio, X-ray and weak-lensing properties suggests that the radio halo is still being formed. The colocation of the X-ray shock with a distinctive radio brightness edge illustrates that the shock is influencing the structure of the radio halo. These observations support the theory that shocks and turbulence influence the formation and evolution of radio halo synchrotron emission.
    03/2014;
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: We outline the science case for extended radio emission and polarization in galaxy clusters which would be a scientifically important area of research for an upcoming Jansky Very Large Array Sky Survey. The survey would provide a major contribution in three key areas of the physics of clusters: 1) the active galactic nucleus population and the impact of feedback on the evolution of the intra-cluster medium, 2) the origin and evolution of diffuse cluster radio sources to probe the physics of mergers with implications for cosmology, and 3) the origin and role of magnetic fields in the ICM and in large scale structures. Considering all three areas, a survey must have sufficient spatial resolution to study the tailed galaxies which trace the cluster weather as well as the radio lobes driving energy into the cluster from the central AGN. The survey must also have sensitivity to low surface brightness emission and large angular scales to probe radio halos and relics as well as the WHIM residing in the large scale structure filaments. Finally, we note that full polarization information would be a highly valuable tool to probe a number of cluster-related issues. Due to the general steep spectral index of the emission we consider the survey is best suited to this science when conducted in P, L, or S bands. We conclude that the choices of S Band + D Configuration, L Band + C Configuration, and P Band + B Configuration offer optimal resolutions for constraining galactic interactions and feedback in cluster environments, while still probing large scale structure and the bulk cluster environment itself. While the push to probe higher redshifts and lower mass limits strongly favors a narrow and deep (or even targeted) survey strategy, we note that a wide survey covering roughly 1/4-2/3 of the sky will have significant scientific return, discovery potential, and archival value.
    01/2014;
  • [show abstract] [hide abstract]
    ABSTRACT: Synchrotron radio emission is being detected from an increasing number of galaxy clusters. Spectral index images are a powerful tool to investigate the origin, nature, and connection of these sources with the dynamical state of the cluster. The aim of this work is to investigate the spectral index distribution of the radio halo in the galaxy cluster A520, a complex system from an optical, radio, and X-ray point of view. We present deep Very Large Array observations in total intensity at 325 and 1400 MHz. We produced and analyzed spectral index images of the radio halo in this frequency range at a resolution of 39" and 60" and looked for possible correlations with the thermal properties of the cluster. We find an integrated radio halo spectral index alpha(325-1400) ~ 1.12. No strong radial steepening is present and the spectral index distribution is intrinsically complex with fluctuations only partially due to measurement errors. The radio halo integrated spectral index and the cluster temperature follow the global trend observed in other galaxy clusters although a strong point-to-point correlation between the spectral index and the thermal gas temperature has not been observed. The complex morphology in the spectral index image of the radio halo in A520 is in agreement with the primary models for radio halo formation. The flatness of the radial profile suggests that the merger is still ongoing and is uniformly and continuously (re-) accelerating the population of relativistic electrons responsible of the radio emission even at large (~ 1 Mpc) distances from the cluster center.
    Astronomy and Astrophysics 10/2013; · 5.08 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: The radio source at the center of the cool core galaxy cluster RBS 797 (z=0.35) is known to exhibit a misalignment of its radio jets and lobes observed at different VLA-scale, with the innermost kpc-scale jets being almost orthogonal to the radio emission which extends for tens of kpc filling the X-ray cavities. Gitti et al. suggested that this peculiar radio morphology may indicate a recurrent activity of the central radio source, where the jet orientation is changing between the different outbursts due to the effects of supermassive binary black holes (SMBBHs). We aim at unveiling the nuclear radio properties of the brightest cluster galaxy (BCG) in RBS 797 and at investigating the presence of a SMBBH system in its center. We have performed new high-resolution observations at 5 GHz with the European VLBI Network (EVN), reaching an angular resolution of 9x5 mas^2 and a sensitivity of 36 microJy/beam. We report the EVN detection of two compact components in the BCG of RBS 797, with a projected separation of ~77 pc. We can envisage two possible scenarios: the two components are two different nuclei in a close binary system, or they are the core and a knot of its jet. Both interpretations are consistent with the presence of SMBBHs. Our re-analysis of VLA archival data seems to favor the first scenario, as we detect two pairs of radio jets misaligned by ~90 degrees on the same kpc scale emanating from the central radio core. If the two outbursts are almost contemporaneous, this is clear evidence of the presence of two active SMBHs, whose radio nuclei are unresolved at VLA resolution. The nature of the double source detected by our EVN observations in the BCG of RBS 797 can be established only by future sensitive, multi-frequency VLBI observations. If confirmed, RBS 797 would be the first SMBBH system observed at medium-high redshift at VLBI resolution. (abridged)
    Astronomy and Astrophysics 08/2013; · 5.08 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: We present first results of the BeppoSAX observation of the Coma Cluster. Thanks to the unprecedented sensitivity of the PDS instrument, the source has been detected up to ∼80 keV. There is clear evidence for emission in excess to the thermal one above ∼25 keV, very likely of non-thermal origin. We have therefore, for the first time, detected the long sought Inverse Compton emission on CMB photons predicted in clusters, like Coma, with radio halos. Combining X and radio observations, a value of 0.16 μG for the volume-averaged intracluster magnetic field is derived.
    Advances in Space Research 07/2013; · 1.18 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: VLA deep radio images at 1.4 GHz in total intensity and polarization reveal a diffuse non-thermal source in the interacting clusters A3411 - A3412. Moreover a small-size low power radio halo at the center of the merging cluster A3411 is found. We present here new optical and X-ray data and discuss the nature and properties of the diffuse non-thermal source. We suggest that the giant diffuse radio source is related to the presence of a large scale filamentary structure and to multiple mergers in the A3411-A3412 complex.
    Monthly Notices of the Royal Astronomical Society 07/2013; 435(1). · 5.52 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: The aim of this work is to probe the magnetic field properties in relics and infall regions of galaxy clusters using Faraday Rotation Measures. We present Very Large Array multi-frequency observations of seven sources in the region South-West of the Coma cluster, where the infalling group NGC4839 and the relic 1253+275 are located. The Faraday Rotation Measure maps for the observed sources are derived and analysed to study the magnetic field in the South-West region of Coma. We discuss how to interpret the data by comparing observed and mock rotation measures maps that are produced simulating different 3-dimensional magnetic field models. The magnetic field model that gives the best fit to the Coma central region underestimates the rotation measure in the South-West region by a factor ~6, and no significant jump in the rotation measure data is found at the position of the relic. We explore different possibilities to reconcile observed and mock rotation measure trends, and conclude that an amplification of the magnetic field along the South-West sector is the most plausible solution. Our data together with recent X-ray estimates of the gas density obtained with Suzaku suggest that a magnetic field amplification by a factor ~3 is required throughout the entire South-West region in order to reconcile real and mock rotation measures trends. The magnetic field in the relic region is inferred to be ~2 microG, consistent with Inverse Compton limits.
    Monthly Notices of the Royal Astronomical Society 05/2013; 433(4). · 5.52 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: Synchrotron radio halos at the center of merging galaxy clusters provide the most spectacular and direct evidence of the presence of relativistic particles and magnetic fields associated with the intracluster medium. The study of polarized emission from radio halos has been shown to be extremely important to constrain the properties of intracluster magnetic fields. However, detecting this polarized signal is a very hard task with the current radio facilities.We investigate whether future radio observatories, such as the Square Kilometer Array (SKA) and its precursors and pathfinders, will be able to detect the polarized emission of radio halos in galaxy clusters.On the basis of cosmological magnetohydrodynamical simulations with initial magnetic fields injected by active galactic nuclei, we predict the expected radio halo polarized signal at 1.4 GHz. We compare these expectations with the limits of current radio facilities and explore the potential of the forthcoming radio interferometers to investigate intracluster magnetic fields through the detection of polarized emission from radio halos.The resolution and sensitivity values that are expected to be obtained in future sky surveys performed at 1.4 GHz using the SKA precursors and pathfinders (like APERTIF and ASKAP) are very promising for the detection of the polarized emission of the most powerful (L1.4GHz>10e25 Watt/Hz) radio halos. Furthermore, the JVLA have the potential to already detect polarized emission from strong radio halos, at a relatively low resolution.However, the possibility of detecting the polarized signal in fainter radio halos (L1.4GHz~10e24 Watt/Hz) at high resolution requires a sensitivity reachable only with SKA.
    Astronomy and Astrophysics 04/2013; · 5.08 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: Radio observations of galaxy clusters show that there are $\mu$G magnetic fields permeating the intra-cluster medium (ICM), but it is hard to accurately constrain the strength and structure of the magnetic fields without the help of advanced computer simulations. We present qualitative comparisons of synthetic VLA observations of simulated galaxy clusters to radio observations of Faraday Rotation Measure (RM) and radio halos. The cluster formation is modeled using adaptive mesh refinement (AMR) magneto-hydrodynamic (MHD) simulations with the assumption that the initial magnetic fields are injected into the ICM by active galactic nuclei (AGNs) at high redshift. In addition to simulated clusters in Xu et al. (2010, 2011), we present a new simulation with magnetic field injections from multiple AGNs. We find that the cluster with multiple injection sources is magnetized to a similar level as in previous simulations with a single AGN. The RM profiles from simulated clusters, both $|RM|$ and the dispersion of RM ($\sigma_{RM}$), are consistent at a first-order with the radial distribution from observations. The correlations between the $\sigma_{RM}$ and X-ray surface brightness from simulations are in a broad agreement with the observations, although there is an indication that the simulated clusters could be slightly over-dense and less magnetized with respect to those in the observed sample. In addition, the simulated radio halos agree with the observed correlations between the radio power versus the cluster X-ray luminosity and between the radio power versus the radio halo size. These studies show that the cluster wide magnetic fields that originate from AGNs and are then amplified by the ICM turbulence (Xu et al. 2010) match observations of magnetic fields in galaxy clusters.
    The Astrophysical Journal 09/2012; 759(1). · 6.73 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: Context. Radio halos are elusive sources located at the center of merging galaxy clusters. To date, only about 40 radio halos are known, thus the discovery of new halos provides important insights into this class of sources. Aims: To improve the quality of the statistics of radio halos, we investigate the radio continuum emission of a sample of galaxy clusters. Methods: We analyzed archival Very Large Array observations at 1.4 GHz, with a resolution of ≃ 1'. These observations were complemented by X-ray, optical, and higher-resolution radio data, leading to the detection of a new radio halo in the central region of A800 and A1550. We discovered a radio relic in the periphery of A910, and finally revealed both a halo and a relic in CL1446+26. Results: The clusters hosting these new halos show an offset between the radio and the X-ray peak. By analyzing this offset statistically, we find that radio halos can be quite asymmetric with respect to the X-ray gas distribution, with an average radio-X-ray displacement of about 180 kpc. When the offsets are normalized by the halo size, there is a tendency for smaller halos to have larger displacements.
    Astronomy and Astrophysics 09/2012; · 5.08 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: Radio halos are elusive sources located at the center of merging galaxy clusters. To date, only about 40 radio halos are known, thus the discovery of new halos provide important insights on this class of sources. To improve the statistics of radio halos, we investigated the radio continuum emission in a sample of galaxy clusters. We analyzed archival Very Large Array observations at 1.4 GHz, with a resolution of about 1 arcmin. These observations complemented by X-ray, optical, and higher resolution radio data allowed to detect a new radio halo in the central region of A800 and A1550. We discovered a radio relic in the periphery of A910, and finally we revealed both a halo and a relic in CL1446+26.Clusters hosting these new halos show an offset between the radio and the X-ray peak. By analyzing this offset statistically we found that radio halos can be quite asymmetric with respect to the X-ray gas distribution, with an average radio - X-ray displacement of about 180 kpc. When the offsets are normalized by the halo size, there is a tendency for smaller halos to show larger displacements.
    07/2012;
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: Clusters of galaxies, as the largest virialized systems in the Universe, are ideal laboratories to study the formation and evolution of cosmic structures...(abridged)... Most of the detailed knowledge of galaxy clusters has been obtained in recent years from the study of ICM through X-ray Astronomy. At the same time, radio observations have proved that the ICM is mixed with non-thermal components, i.e. highly relativistic particles and large-scale magnetic fields, detected through their synchrotron emission. The knowledge of the properties of these non-thermal ICM components has increased significantly, owing to sensitive radio images and to the development of theoretical models. Diffuse synchrotron radio emission in the central and peripheral cluster regions has been found in many clusters. Moreover large-scale magnetic fields appear to be present in all galaxy clusters, as derived from Rotation Measure (RM) studies. Non-thermal components are linked to the cluster X-ray properties, and to the cluster evolutionary stage, and are crucial for a comprehensive physical description of the intracluster medium. They play an important role in the cluster formation and evolution. We review here the observational properties of diffuse non-thermal sources detected in galaxy clusters: halos, relics and mini-halos. We discuss their classification and properties. We report published results up to date and obtain and discuss statistical properties. We present the properties of large-scale magnetic fields in clusters and in even larger structures: filaments connecting galaxy clusters. We summarize the current models of the origin of these cluster components, and outline the improvements that are expected in this area from future developments thanks to the new generation of radio telescopes.
    Astronomy and Astrophysics Review 05/2012; 20(1). · 9.50 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: We investigate the magnetic field power spectrum in the cool core galaxy cluster A2199 by analyzing the polarized emission of the central radio source 3C338. The polarized radiation from the radio emitting plasma is modified by the Faraday rotation as it passes through the magneto-ionic intracluster medium. We use Very Large Array observations between 1665 and 8415 MHz to produce detailed Faraday rotation measure and fractional polarization images of the radio galaxy. We simulate Gaussian random three-dimensional magnetic field models with different power-law power spectra and we assume that the field strength decreases radially with the thermal gas density as n_e^{\eta}. By comparing the synthetic and the observed images with a Bayesian approach, we constrain the strength and structure of the magnetic field associated with the intracluster medium. We find that the Faraday rotation toward 3C338 in A2199 is consistent with a magnetic field power law power spectrum characterized by an index n=(2.8 \pm 1.3) between a maximum and a minimum scale of fluctuation of \Lambda_{max}=(35 \pm 28) kpc and \Lambda_{min}=(0.7 \pm 0.1) kpc, respectively. By including in the modeling X-ray cavities coincident with the radio galaxy lobes, we find a magnetic field strength of =(11.7 \pm 9.0) \mu G at the cluster center. Further out, the field decreases with the radius following the gas density to the power of \eta=(0.9 \pm 0.5).
    Astronomy and Astrophysics 01/2012; · 5.08 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: The aim of this work is to investigate the possible presence of extended diffuse synchrotron radio emission associated with the intracluster medium of the complex galaxy cluster A1689. The radio continuum emission of A1689 has been investigated by analyzing archival observations at 1.2 and 1.4 GHz obtained with the Very Large Array in different configurations. We report the detection of an extended, diffuse, low-surface brightness radio emission located in the central region of A1689. The surface brightness profile of the diffuse emission at 1.2 GHz indicates a central radio brightness of ~1.7 \mu Jy/arcsec^2 and the 3\sigma radio isophothes reveal the largest linear size to be 730 kpc. Given its central location, the low-level surface brightness, and the comparatively large extension, we classify the diffuse cluster-wide emission in A1689 as a small radio halo.
    Astronomy and Astrophysics 06/2011; 535. · 5.08 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: Radio halos are extended and diffuse non-thermal radio sources present at the cluster center, not obviously associated with any individual galaxy. A strong correlation has been found between the cluster X-ray luminosity and the halo radio power. We observe and analyze the diffuse radio emission present in the complex merging structure Abell 523, classified as a low luminosity X-ray cluster, to discuss its properties in the context of the halo total radio power versus X-ray luminosity correlation. We reduced VLA archive observations at 1.4 GHz to derive a deep radio image of the diffuse emission, and compared radio, optical, and X-ray data. Low-resolution VLA images detect a giant radio halo associated with a complex merging region. The properties of this new halo agree with those of radio halos in general discussed in the literature, but its radio power is about a factor of ten higher than expected on the basis of the cluster X-ray luminosity. Our study of this giant radio source demonstrates that radio halos can also be present in clusters with a low X-ray luminosity. Only a few similar cases have so far been found . This result suggests that this source represent a new class of objects, that cannot be explained by classical radio halo models. We suggest that the particle reacceleration related to merging processes is very efficient and/or the X-ray luminosity is not a good indicator of the past merging activity of a cluster.
    Astronomy and Astrophysics 04/2011; 530. · 5.08 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: The aim of this work is to investigate the average properties of the intra-cluster medium (ICM) magnetic fields, and to search for possible correlations with the ICM thermal properties and cluster radio emission. We have selected a sample of 39 massive galaxy clusters from the HIghest X-ray FLUx Galaxy Cluster Sample, and used Northern VLA Sky Survey data to analyze the fractional polarization of radio sources out to 10 core radii from the cluster centers. Following Murgia et al (2004), we have investigated how different magnetic field strengths affect the observed polarized emission of sources lying at different projected distances from the cluster center. In addition, statistical tests are performed to investigate the fractional polarization trends in clusters with different thermal and non-thermal properties. We find a trend of the fractional polarization with the cluster impact parameter, with fractional polarization increasing at the cluster periphery and decreasing toward the cluster center. Such trend can be reproduced by a magnetic field model with central value of few $\mu$G. The logrank statistical test indicates that there are no differences in the depolarization trend observed in cluster with and without radio halo, while the same test indicates significant differences when the depolarization trend of sources in clusters with and without cool core are compared. The comparison between clusters with high and low temperatures does not yields significant differences. Although therole of the gas density should be better accounted for, these results give important indications for models that require a role of the ICM magnetic field to explain the presence of cool core and radio halos in galaxy clusters.
    03/2011;
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: The first detection of a diffuse radio source in a cluster of galaxies, dates back to the 1959 (Coma Cluster, Large et al. 1959). Since then, synchrotron radiating radio sources have been found in several clusters, and represent an important cluster component which is linked to the thermal gas. Such sources indicate the existence of large scale magnetic fields and of a population of relativistic electrons in the cluster volume. The observational results provide evidence that these phenomena are related to turbulence and shock-structures in the intergalactic medium, thus playing a major role in the evolution of the large scale structure in the Universe. The interaction between radio sources and cluster gas is well established in particular at the center of cooling core clusters, where feedback from AGN is a necessary ingredient to adequately describe the formation and evolution of galaxies and host clusters.
    Proceedings of the International Astronomical Union 01/2011; 6.
  • [show abstract] [hide abstract]
    ABSTRACT: We present a new approach to investigate the average properties of the magnetic field in the intra-cluster medium (ICM), and to search for possible correlations with the thermal properties of the ICM and cluster radio emission. We have selected a sample of 33 massive galaxy clusters from the HIghest X-ray FLUx Galaxy Cluster Sample, and used Northern VLA Sky Survey data to analyze the fractional polarization (F_p) of radio sources out to 10 core radii from the cluster centers. We detect a trend of F_p versus the projected distance from the cluster center. Such a trend can be reproduced by a magnetic field model with central values of a few mu G. The logrank statistical test indicates that there are no differences in the depolarization trend observed in clusters with and without radio halo, while the same test indicates significant differences in depolarization trend of sources in clusters with and without cool core. Although the role of the gas density should be better accounted for, these results are important for establishing a link between cluster magnetic fields, cool cores and radio halos.
    Memorie della Societa Astronomica Italiana. 01/2011;
  • [show abstract] [hide abstract]
    ABSTRACT: Context. It is now established that magnetic fields are present in the intra-cluster medium (ICM) of galaxy clusters, as revealed by observations of radio halos and radio relics and from the study of the Faraday rotation measures of sources located either behind or within clusters. Deep radio polarization observations of clusters have been performed in the last years, and the properties of the ICM magnetic field have been constrained in a small number of well-studied objects. Aims: The aim of this work is to investigate the average properties of the ICM magnetic fields, and to search for possible correlations with the ICM thermal properties and cluster radio emission. Methods: We have selected a sample of 39 massive galaxy clusters from the HIghest X-ray FLUx Galaxy Cluster Sample, and used Northern VLA Sky Survey data to analyze the fractional polarization of radio sources out to 10 core radii from the cluster centers. We have investigated how different magnetic field strengths affect the observed polarized emission of sources lying at different projected distances from the cluster center. In addition, statistical tests are performed to investigate the fractional polarization trends in clusters with different thermal and non-thermal properties. Results: We find a trend of the fractional polarization with the cluster impact parameter, with fractional polarization increasing at the cluster periphery and decreasing toward the cluster center. Such trend can be reproduced by a magnetic field model with central value of few muG. The logrank statistical test indicates that there are no differences in the depolarization trend observed in cluster with and without radio halo, while the same test indicates significant differences when the depolarization trend of sources in clusters with and without cool core are compared. The comparison between clusters with high and low temperatures does not yields significant differences. Although the role of the gas density should be better accounted for, these results give important indications for models that require a role of the ICM magnetic field to explain the presence of cool core and radio halos in galaxy clusters.
    Astronomy and Astrophysics 01/2011; 530. · 5.08 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: We investigate the magnetic field power spectrum in the cool core galaxy cluster A2199 by analyzing the polarized emission of the central radio source 3C 338. We use Very Large Array observations at 1.4, 5, and 8 GHz to produce detailed Faraday rotation measure and fractional polarization images of the radio galaxy. By comparing the observations and the predictions of 3D magnetic field models with a Bayesian approach, we constrain the strength and structure of the magnetic field associated with the intra-cluster medium.
    Memorie della Societa Astronomica Italiana. 01/2011;

Publication Stats

2k Citations
639.59 Total Impact Points

Institutions

  • 2012
    • Princeton University
      • Department of Astrophysical Sciences
      Princeton, New Jersey, United States
  • 1985–2006
    • University of Bologna
      • Department of Physics and Astronomy DIFA
      Bologna, Emilia-Romagna, Italy
    • French National Centre for Scientific Research
      Lutetia Parisorum, Île-de-France, France
  • 2004
    • Harvard-Smithsonian Center for Astrophysics
      • Smithsonian Astrophysical Observatory
      Cambridge, Massachusetts, United States
  • 1998–2004
    • National Radio Astronomy Observatory
      Charlottesville, Virginia, United States
  • 1990
    • California Institute of Technology
      Pasadena, California, United States
  • 1984
    • Max Planck Institute for Radio Astronomy
      Bonn, North Rhine-Westphalia, Germany