Cruzipain, a major Trypanosoma cruzi antigen, promotes arginase-2 expression and survival of neonatal mouse cardiomyocytes.

Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Univ. Nacional de Córdoba, Haya de la Torre y Medina Allende, Ciudad universitaria, CP 5000, Córdoba, Argentina.
AJP Cell Physiology (Impact Factor: 3.71). 03/2004; 286(2):C206-12. DOI: 10.1152/ajpcell.00282.2003
Source: PubMed

ABSTRACT An intense myocarditis is frequently found in the acute phase of Trypanosoma cruzi infection. Despite the cardiac damage, infected individuals may remain asymptomatic for decades. Thus T. cruzi may directly prevent cardiomyocyte death to keep heart destruction in check. Recently, it has been shown that Schwann cell invasion by T. cruzi, their prime target in the peripheral nervous system, suppressed host cell apoptosis caused by growth factor deprivation. Likewise, the trans-sialidase of T. cruzi reproduced this antiapoptotic activity of the parasite. In this study, we have investigated the effect of cruzipain, another important T. cruzi antigen, on survival and cell death of neonatal BALB/c mouse cardiomyocyte cultures. We have found that cruzipain, as well as T. cruzi infection, promoted survival of cardiomyocytes cultured under serum deprivation. The antiapoptotic effect was mediated by Bcl-2 expression but not by Bcl-xL expression. Because arginase activity is involved in cell differentiation and wound healing in most cell types and it favors parasite growth within the cell, we have further investigated the effect of cruzipain on the regulation of l-arginine metabolic pathways. Our results have revealed that cruzipain enhanced arginase activity and the expression of arginase-2 isoform but failed to induce nitric oxide synthase activity. In addition, the inhibition of arginase activity by NG-hydroxy-l-arginine, abrogated the antiapoptotic action of cruzipain. The results demonstrate that cruzipain may act as a survival factor for cardiomyocytes because it rescued them from apoptosis and stimulated arginase-2.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We studied cell death by apoptosis and necrosis in cardiac remodeling produced by Trypanosoma cruzi infection. In addition, we evaluated collagen I, III, IV (CI, CIII and CIV) deposition in cardiac tissue, and their relationship with serum levels of procollagen type I carboxy-terminal propeptide (PICP) and procollagen type III amino-terminal propeptide (PIIINP). Eight infected and two uninfected guinea pigs were necropsied at seven time points up to one year post-infection. Cell death by necrosis and apoptosis was determined by histopathological observation and terminal deoxynucleotidyl transferase dUTP nick end labeling, respectively. Deposition of cardiac collagen types was determined by immunohistochemistry and serum levels of PICP, PIIINP, and anti-T. cruzi IgG1 and IgG2 by ELISA. IgG2 (Th1 response) predominated throughout the course of infection; IgG1 (Th2 response) was detected during the chronic phase. Cardiac cell death by necrosis predominated over apoptosis during the acute phase; during the chronic phase, both apoptosis and necrosis were observed in cardiac cells. Apoptosis was also observed in lymphocytes, endothelial cells and epicardial adipose tissue, especially in the chronic phase. Cardiac levels of CI, CIII, CIV increased progressively, but the highest levels were seen in the chronic phase and were primarily due to increase in CIII and CIV. High serum levels of PICP and PIIINP were observed throughout the infection, and increased levels of both biomarkers were associated with cardiac fibrosis (p = 0.002 and p = 0.038, respectively). These results confirm the role of apoptosis in cell loss mainly during the chronic phase and the utility of PICP and PIIINP as biomarkers of fibrosis in cardiac remodeling during T. cruzi infection.
    PLoS Neglected Tropical Diseases 02/2013; 7(2):e1996. · 4.57 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Interleukine-6 mediates host defense and cell survival mainly through the activation of the transcription factor STAT3 via the glycoprotein gp130, a shared signal-transducing receptor for several IL-6-type cytokines. We have reported that the cardiotrophic parasite Trypanosoma cruzi protects murine cardiomyocytes from apoptosis. In agreement, an intense induction of the anti-apoptotic factor Bcl-2 is found in cardiac fibers during the acute phase of infection, establishing a higher threshold against apoptosis. We report here that inactive cruzipain, the main cysteine protease secreted by the parasite, specifically triggered TLR2 and the subsequent release of IL-6, which acted as an essential anti-apoptotic factor for cardiomyocyte cultures. Although comparable IL-6 levels were found under active cruzipain stimulation, starved cardiac cell monolayers could not be rescued from apoptosis. Moreover, cardiomyocytes treated with active cruzipain completely abrogated the STAT3 phosphorylation and nuclear translocation induced by recombinant IL-6. This inhibition was also observed on splenocytes, but it was reverted when the enzyme was complexed with chagasin, a parasite cysteine protease inhibitor. Furthermore, the inhibition of IL-6-induced p-STAT3 was evidenced in spleen cells stimulated with pre-activated supernatants derived from trypomastigotes. To account for these observations, we found that cruzipain enzymatically cleaved recombinant gp130 ectodomain, and induced the release of membrane-distal N-terminal domain of this receptor on human peripheral blood mononuclear cells. These results demonstrate, for the first time, that the parasite may modify the IL-6-induced response through the modulation of its cysteine protease activity, suggesting that specific inhibitors may help to improve the immune cell activation and cardioprotective effects. HIGHLIGHT: Inactive cruzipain triggers TLR2 and IL-6 secretion, leading to cardioprotection. Cruzipain enzymatically cleaves the IL-6 receptor gp130 in different host cells. This is reverted when the enzyme is complexed with chagasin, a parasite inhibitor. Cruzipain induces the release of Ig-like domain of gp130 on human leukocytes. Trypomastigote supernatants abolish STAT3 phosphorylation in splenocytes.
    Biochimica et Biophysica Acta 12/2012; · 4.66 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The haemoflagellate Trypanosoma cruzi is the causative agent of Chagas' disease that occurs in approximately 8 million people in Latin America. Patients infected with T. cruzi frequently suffer of cardiomegaly and may die of myocardial failure. Here we show that T. cruzi trypomastigotes (extracellular form) increased in vitro apoptosis of rat cardiomyocytes. Additionally, we demonstrated that amastigotes (intracellular form), for which a method for purification was established, were also able to induce cardiomyocyte apoptosis. Increase of apoptosis was associated with up-regulation of the apoptotic gene bax by trypomastigotes, while expression of the anti-apoptotic gene bcl-2 was down-regulated by amastigotes. The transcription factor STAT3 but not STAT1 was activated in cardiomyocytes by trypomastigotes. In addition, tlr7 gene expression was up-regulated in cardiomyocytes incubated with trypomastigotes, suggesting that this Toll-like receptor is involved in the intracellular recognition after host cell invasion by T. cruzi. Glycosylphosphatidylinositols purified from trypomastigotes did not induce cardiomyocyte apoptosis and STAT activation but down-regulated tlr7 gene expression. In conclusion, cardiomyopathy observed in Chagas' disease might be in part due to apoptosis of cardiomyocytes induced directly by the parasite.
    Apoptosis 02/2013; · 4.07 Impact Factor


Available from
May 30, 2014