Article

BACE1 (beta-secretase) knockout mice do not acquire compensatory gene expression changes or develop neural lesions over time.

Amgen Inc., Thousand Oaks, CA, USA.
Neurobiology of Disease (Impact Factor: 5.2). 11/2003; 14(1):81-8. DOI: 10.1016/S0969-9961(03)00104-9
Source: PubMed

ABSTRACT The formation of Alzheimer's Abeta peptide is initiated when the amyloid precursor protein (APP) is cleaved by the enzyme beta-secretase (BACE1); inhibition of this cleavage has been proposed as a means of treating Alzheimer's disease. (AD) We have previously shown that young BACE1 knockout mice (BACE1 KO) do not generate Abeta but in other respects appear normal. Here we have extended this analysis to include both gene expression profiling and phenotypic assessment of older BACE1 KO animals to evaluate the impact of chronic Abeta deficiency. We did not detect global compensatory changes in neural gene expression in young BACE1 KO mice. In particular, expression of the beta-secretase homolog BACE2 was not upregulated. Furthermore, we found no structural alterations in any organ, including all central and peripheral neural tissues, of BACE1 KO mice up to 14 months of age. Aged BACE1 KO mice engineered to overexpress human APP (BACE1 KO/APPtg) did not develop amyloid plaques. These data provide evidence that neither beta-secretase nor Abeta plays a vital role in mouse physiology and that chronic beta-secretase inhibition could be a useful approach in treating AD.

0 Bookmarks
 · 
100 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The beta-secretase, BACE1, cleaves APP to initiate generation of the beta-amyloid peptide, Abeta, that comprises amyloid plaques in Alzheimer's disease (AD). Reducing BACE1 activity is an attractive therapeutic approach to AD, but complete inhibition of BACE1 could have mechanism-based side-effects as BACE1-/- mice show deficits in axon guidance, myelination, memory, and other neurological processes. Since BACE1+/- mice appear normal there is interest in determining whether 50% reduction in BACE1 is potentially effective in preventing or treating AD. APP transgenic mice heterozygous for BACE1 have decreased Abeta but the extent of reduction varies greatly from study to study. Here we assess the effects of 50% BACE1 reduction on the widely used 5XFAD mouse model of AD. 50% BACE1 reduction reduces Abeta42, plaques, and BACE1-cleaved APP fragments in female, but not in male, 5XFAD/BACE1+/- mice. 5XFAD/BACE1+/+ females have higher levels of Abeta42 and steady-state transgenic APP than males, likely caused by an estrogen response element in the transgene Thy-1 promoter. We hypothesize that higher transgenic APP level in female 5XFAD mice causes BACE1 to no longer be in excess over APP so that 50% BACE1 reduction has a significant Abeta42 lowering effect. In contrast, the lower APP level in 5XFAD males allows BACE1 to be in excess over APP even at 50% BACE1 reduction, preventing lowering of Abeta42 in 5XFAD/BACE1+/- males. We also developed and validated a dot blot assay with an Abeta42-selective antibody as an accurate and cost-effective alternative to ELISA for measuring cerebral Abeta42 levels. 50% BACE1 reduction lowers Abeta42 in female 5XFAD mice only, potentially because BACE1 is not in excess over APP in 5XFAD females with higher transgene expression, while BACE1 is in excess over APP in 5XFAD males with lower transgene expression. Our results suggest that greater than 50% BACE1 inhibition might be necessary to significantly lower Abeta, given that BACE1 is likely to be in excess over APP in the human brain. Additionally, in experiments using the 5XFAD mouse model, or other Thy-1 promoter transgenic mice, equal numbers of male and female mice should be used, in order to avoid artifactual gender-related differences.
    Molecular Neurodegeneration 01/2015; 10(1):1. DOI:10.1186/1750-1326-10-1 · 5.29 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: β-Secretase 1 (BACE1) represents an attractive target for the treatment of Alzheimer's disease. In the course of development of a novel small molecule BACE1 inhibitor (AMG-8718), retinal thinning was observed in a 1-month toxicity study in the rat. To further understand the lesion, an investigational study was conducted whereby rats were treated daily with AMG-8718 for 1 month followed by a 2-month treatment-free phase. The earliest detectable change in the retina was an increase in autofluorescent granules in the retinal pigment epithelium (RPE) on day 5; however, there were no treatment-related light microscopic changes observed in the neuroretina and no changes observed by fundus autofluorescence or routine ophthalmoscopic examination after 28 days of dosing. Following 2 months of recovery, there was significant retinal thinning attributed to loss of photoreceptor nuclei from the outer nuclear layer. Electroretinographic changes were observed as early as day 14, before any microscopic evidence of photoreceptor loss. BACE1 knockout rats were generated and found to have normal retinal morphology indicating that the retinal toxicity induced by AMG-8718 was likely off-target. These results suggest that AMG-8718 impairs phagolysosomal function in the rat RPE, which leads to photoreceptor dysfunction and ultimately loss of photoreceptors.
    Toxicologic Pathology 10/2014; DOI:10.1177/0192623314553804 · 1.92 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: β-site amyloid precursor protein cleaving enzyme 1 (BACE1) is the β-secretase enzyme required for the production of the neurotoxic β-amyloid (Aβ) peptide that is widely considered to have a crucial early role in the etiology of Alzheimer's disease (AD). As a result, BACE1 has emerged as a prime drug target for reducing the levels of Aβ in the AD brain, and the development of BACE1 inhibitors as therapeutic agents is being vigorously pursued. It has proven difficult for the pharmaceutical industry to design BACE1 inhibitor drugs that pass the blood-brain barrier, however this challenge has recently been met and BACE1 inhibitors are now in human clinical trials to test for safety and efficacy in AD patients and individuals with pre-symptomatic AD. Initial results suggest that some of these BACE1 inhibitor drugs are well tolerated, although others have dropped out because of toxicity and it is still too early to know whether any will be effective for the prevention or treatment of AD. Additionally, based on newly identified BACE1 substrates and phenotypes of mice that lack BACE1, concerns have emerged about potential mechanism-based side effects of BACE1 inhibitor drugs with chronic administration. It is hoped that a therapeutic window can be achieved that balances safety and efficacy. This review summarizes the current state of progress in the development of BACE1 inhibitor drugs and the evaluation of their therapeutic potential for AD.
    Alzheimer's Research and Therapy 12/2014; 6(9):89. DOI:10.1186/s13195-014-0089-7 · 3.50 Impact Factor