Article

A STUDY OF DILUTION IN THE OTTAWA RIVER USING RHODAMINE B. I. NPD TO DEEP RIVER.

Health Physics (Impact Factor: 1.02). 04/1964; 10:195-201. DOI: 10.1097/00004032-196403000-00006
Source: PubMed

ABSTRACT Rhodamine B, a fluorescent dye, was used to study dilution in the Ottawa
River downstream of the NPD reactor site. Dye was injected into the NPD process
sewer for a 3-hr period and the concentration measured as it dispersed in the
river. An initial dilution of l00 was observed near the outfall. A wide, deep
section of the Ottawa River downstream of the reactor site acted as a detention
and mixing basin. Dye concentrations at the town of Deep River water intake, 16
km downriver, indicated a minimum overall dilution of the effluent of 3 x 10/sup
4/. The water velocity in this section of the Ottawa River was about 9 km/day.
(auth)

0 Bookmarks
 · 
45 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Among those who make a living from the science of secrecy, worry and paranoia are just signs of professionalism. Can we protect our secrets against those who wield superior technological powers? Can we trust those who provide us with tools for protection? Can we even trust ourselves, our own freedom of choice? Recent developments in quantum cryptography show that some of these questions can be addressed and discussed in precise and operational terms, suggesting that privacy is indeed possible under surprisingly weak assumptions.
    Nature 03/2014; 507(7493):443-7. · 38.60 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Quantum key distribution promises unconditionally secure communications. However, as practical devices tend to deviate from their specifications, the security of some practical systems is no longer valid. In particular, an adversary can exploit imperfect detectors to learn a large part of the secret key, even though the security proof claims otherwise. Recently, a practical approach—measurement-device-independent quantum key distribution—has been proposed to solve this problem. However, so far its security has only been fully proven under the assumption that the legitimate users of the system have unlimited resources. Here we fill this gap and provide a rigorous security proof against general attacks in the finite-key regime. This is obtained by applying large deviation theory, specifically the Chernoff bound, to perform parameter estimation. For the first time we demonstrate the feasibility of long-distance implementations of measurement-device-independent quantum key distribution within a reasonable time frame of signal transmission.
    Nature Communications 04/2014; 5. · 10.02 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: To date, all schemes for entanglement distribution needed to send entangled particles or a separable mediating particle among distant participants. Here, we propose a counterfactual protocol for entanglement distribution against the traditional forms, that is, two distant particles can be entangled with no physical particles travel between the two remote participants. We also present an alternative scheme for realizing the counterfactual photonic entangled state distribution using Michelson-type interferometer and self-assembled GaAs/InAs quantum dot embedded in a optical microcavity. The numerical analysis about the effect of experimental imperfections on the performance of the scheme shows that the entanglement distribution may be implementable with high fidelity.
    Optics Express 04/2014; 22(8):8970-8984. · 3.55 Impact Factor