Intracellular mechanism of mitochondrial adenosine triphosphate-sensitive potassium channel activation with isoflurane

Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
Anesthesia & Analgesia (Impact Factor: 3.42). 11/2003; 97(4):1025-32, table of contents. DOI: 10.1213/01.ANE.0000077072.67502.CC
Source: PubMed

ABSTRACT The precise mechanism of isoflurane and mitochondrial adenosine triphosphate-sensitive potassium channel (mitoK(ATp)) interaction is still unclear, although the mitoK(ATP) is involved in isoflurane-induced preconditioning. We examined the role of various intracellular signaling systems in mitoK(ATP) activation with isoflurane. Mitochondrial flavoprotein fluorescence (MFF) was measured to quantify mitoK(ATP) activity in guinea pig cardiomyocytes. To confirm isoflurane-induced MFF, cells were exposed to Tyrode's solution containing either isoflurane (1.0 +/- 0.1 mM) or diazoxide and then both drugs together (n = 10 each). In other studies, the following drugs were each added during isoflurane administration: adenosine or the idenosine receptor antagonist 8-(p-sulfophenyl)theophylline (SPT); the protein kinase C (PKC) activators phorbol-12-myristate-13-acetate (PMA) and phorbol-12,13-dibutyrate (PDBu); the PKC inhibitors polymyxin B and staurosporine; the tyrosine kinase inhibitor lavendustin A; or the mitogen-activated protein kinase inhibitor SB203580 (n = 10 each). Isoflurane potentiated MFF induced by diazoxide (100 muM), and diazoxide also increased isoflurane-induced MFF. PMA (0.2 muM), PDBu (1 muM), and adenosine (100 muM) induced MFF. However, SPT (100 muM), polymyxin B (50 muM), staurosporine (200 nM), lavendustin A (0.5 muM), and SB203580 (10 muM) all failed to inhibit the effect of isoflurane. Our results show that isoflurane, adenosine, and PKC activate mitoK(ATP). However, our data do not support an action of isoflurane through pathways involving adenosine, PKC, tyrosine kinase, or mitogen-activated protein kinase. These results suggest that isoflurane may directly activate mitoK(ATP).

Download full-text


Available from: Zeljko Bosnjak, Jul 06, 2015
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We examined in a rabbit model of transient spinal cord ischemia (SCI) whether isoflurane (Iso) preconditioning induces ischemic tolerance to SCI in a dose-response manner, and whether this effect is dependent on mitochondrial adenosine triphosphate-dependent potassium (K(ATP)) channel. Eighty-six rabbits were randomly assigned to 10 groups: Control group (n=8) received no pretreatment. Ischemic preconditioning (IPC) group (n=8) received 5 min of IPC 30 min before SCI. The Iso 1, Iso 2 and Iso 3 groups (n=10, 9, 8) underwent 30 min of 1.05, 2.1 and 3.15% Iso inhalation commencing 45 min before SCI. The Iso 1HD, Iso 2HD and Iso 3HD groups (n=9, 9, 8) each received a specific mitochondrial K(ATP) channel blocker, 5-hydroxydecanoic acid (5HD, 20mg/kg), 5 min before each respective Iso inhalation. The 5HD group (n=8) received 5HD without Iso inhalation. The sham group (n=9) had no SCI. SCI was produced by infra-renal aortic occlusion via the inflated balloon of a Swan-Ganz catheter for 20 min. The Iso 1, Iso 2 and Iso 3 groups showed a better neurologic outcome and more viable motor nerve cells (VMNCs) in the anterior spinal cord 72 h after reperfusion than the control group (p<0.05). Iso 3 group showed a better neurologic outcome and more VMNCs than Iso 1 group (p<0.05). And, the Iso 1, Iso 2 and Iso 3 groups showed a better neurologic outcome and higher VMNC numbers than the corresponding Iso 1HD, Iso 2HD and Iso 3HD groups (p<0.05). This study demonstrates that Iso preconditioning protects the spinal cord against neuronal damage due to SCI in a dose-response manner via the activation of mitochondrial K(ATP) channels.
    Neuroscience Letters 11/2005; 387(2):90-4. DOI:10.1016/j.neulet.2005.06.072
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Das Phänomen der ischämischen Präkonditionierung beschreibt einen endogenen Schutzmechanismus, der in einer erhöhten Toleranz des Gewebes gegenüber ischämischen Episoden resultiert. Volatile Anästhetika sind in der Lage, diesen Mechanismus zu aktivieren und somit betroffene Gewebe zu präkonditionieren. Die ischämische Präkonditionierung zeigt an Kaninchen ein biphasisches Verlaufsmuster, bestehend aus einem frühen ersten Fenster sowie einem späten zweiten Fenster der Präkonditionierung. Beide Fenster sind durch eine Phase ohne kardioprotektiven Effekt getrennt. Ziel der vorliegenden Arbeit war es, für das volatile Anästhetikum Desfluran ebenfalls dieses biphasische Zeitmuster nachzuweisen sowie die Rolle von Stickstoffmonoxid (NO) in diesem Prozess zu charakterisieren. Wir führten unsere Untersuchungen in einem in vivo-Herzinfarktmodell an Kaninchen durch. Wir konnten zeigen, dass Desfluran ein erstes Fenster der Präkonditionierung induziert, welches bis zu zwei Stunden nach Abflutung des volatilen Agens nachweisbar ist. Weiterhin induzierte Desfluran ein zweites Fenster der Präkonditionierung, dessen kardioprotektiver Effekt nach 24 Stunden einsetzt und bis zu 72 Stunden nach Applikation des Anästhetikums nachweisbar ist. Erstes und zweites Fenster der Präkonditionierung waren durch eine Episode ohne nachweisbaren kardioprotektiven Effekt getrennt. 96 Stunden nach Abflutung des Anästhetikums war keine präkonditionierende Wirkung mehr nachweisbar. Um die Rolle von NO beim zweiten Fenster der Desfluran-induzierten Präkonditionierung zu untersuchen, verabreichten wir den NO-Synthase-Blocker L-omega-Nitro-Arginin (LNA) vor der Koronararterienokklusion. Anhand unserer Ergebnisse konnten wir nachweisen, dass die Desfluran-induzierte Präkonditionierung des Kaninchenmyokards ein der ischämischen Präkonditionierung ähnliches charakteristisches biphasisches Verlaufsmuster aufweist und das endogen synthetisiertes NO als Mediator des zweiten Fensters der Desfluran-induzierten Präkonditionierung wirkt. The phenomenon of ischemic preconditioning (IPC) describes an endogenous protective mechanism resulting in increased tolerance of tissues against ischemia. Volatile anesthetics are able to activate this mechanism of preconditioning. Ischemic preconditioning shows a characteristic biphasic time course consisting of an early first and a delayed second window of preconditioning separated by a period without cardioprotective effects. The aim of the current study was to investigate wether desflurane-induced preconditioning exhibits a biphasic time pattern similar to IPC, and to characterize the role of nitric oxide (NO) in this process. For this purpose we used an in vivo rabbit model of acute myocardial infarction. Desflurane induced a first window of preconditioning which lasted up to two hours after the cessation of the volatile anesthetic. Furthermore, desflurane induced a second window of preconditioning, which was detectable after 24 hours and lasted up to 72 hours after administration of the volatile anesthetic. Both windows of protection were separated by a period without any cardioprotective effect. No cardioprotection was detectable 96 hours after cessation of desflurane. To determine the role of NO in the second window of preconditioning we administered the NO-synthase inhibitor L-omega-nitro-arginine (LNA) prior to coronary artery occlusion. Our results demonstrate that desflurane-induced preconditioning against myocardial infarction in vivo exhibits a characteristic biphasic time pattern similar to ischemic preconditioning. In addition, we demonstrated that endogenous NO is a mediator of the second window of desflurane-induced preconditioning.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Cardiovascular disease is a major healthcare problem in the US. The presence of this disease significantly affects the outcome of both cardiac and non-cardiac surgery, and peri-operative cardiac morbidity is one of the leading causes of death following anesthesia and surgery. The considerable incidence of myocardial infarction, congestive heart failure, myocardial ischemia, or serious dysrhythmias during the intra- operative or post-operative periods has led many studies to examine medical factors and interventions for decreasing cardiac risk in patients with cardiovascular disease. An extensive amount of work has focused on whether any one anesthetic agent or technique is particularly beneficial for patients with coronary artery disease (CAD). Experimental studies conducted in the laboratory have clearly demonstrated that volatile anesthetics exert profound cardioprotection against myocardial ischemia and reperfusion injury. The purpose of this overview is to summarize the interaction of volatile anesthetics with ischemic myocardium and briefly discuss the underlying mechanisms of cardioprotection against ischemia and reperfusion injury. Discussion