The anatomy of the world's largest extinct rodent.

Universität Tübingen, Spezielle Zoologie, Auf der Morgenstelle 28, D-72076 Tübingen, Germany.
Science (Impact Factor: 31.2). 10/2003; 301(5640):1708-10. DOI: 10.1126/science.1089332
Source: PubMed

ABSTRACT Phoberomys is reported to be the largest rodent that ever existed, although it has been known only from isolated teeth and fragmentary postcranial bones. An exceptionally complete skeleton of Phoberomys pattersoni was discovered in a rich locality of fossil vertebrates in the Upper Miocene of Venezuela. Reliable body mass estimates yield approximately 700 kilograms, more than 10 times the mass of the largest living rodent, the capybara. With Phoberomys, Rodentia becomes one of the mammalian orders with the largest size range, second only to diprotodontian marsupials. Several postcranial features support an evolutionary relationship of Phoberomys with pakaranas from the South American rodent radiation. The associated fossil fauna is diverse and suggests that Phoberomys lived in marginal lagoons and wetlands.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: About 3 million years ago (Ma), the Isthmus of Panama joined the Americas, forming a land bridge over which inhabitants of each America invaded the other-the Great American Biotic Interchange. These invasions transformed land ecosystems in South and Middle America. Humans invading from Asia over 12000 years ago killed most mammals over 44 kg, again transforming tropical American ecosystems. As a sea barrier, the isthmus induced divergent environmental change off its two coasts-creating contrasting ecosystems through differential extinction and diversification. Approximately 65 Ma invading marsupials and ungulates of North American ancestry, and xenarthrans of uncertain provenance replaced nearly all South America's non-volant mammals. There is no geological evidence for a land bridge at that time. Together with rodents and primates crossing from Africa 42 to 30 Ma, South America's mammals evolved in isolation until the interchange's first heralds less than 10 Ma. Its carnivores were ineffective marsupials. Meanwhile, North America was invaded by more competitive Eurasian mammals. The Americas had comparable expanses of tropical forest 55 Ma; later, climate change confined North American tropical forest to a far smaller area. When the isthmus formed, North American carnivores replaced their marsupial counterparts. Although invaders crossed in both directions, North American mammals spread widely, diversified greatly, and steadily replaced South American open-country counterparts, unused to effective predators. Invading South American mammals were less successful. South America's birds, bats, and smaller rainforest mammals, equally isolated, mostly survived invasion. Its vegetation, enriched by many overseas invaders, remained intact. This vegetation resists herbivory effectively. When climate permitted, South America's rainforest, with its bats, birds and mammals, spread to Mexico. Present-day tropical American vegetation is largely zoned by trade-offs between exploiting well-watered settings versus surviving droughts, exploiting fertile versus coping with poor soil, and exploiting lowland warmth versus coping with cooler altitudes. At the start of the Miocene, a common marine biota extended from Trinidad to Ecuador and western Mexico, which evolved in isolation from the Indo-Pacific until the Pleistocene. The seaway between the Americas began shoaling over 12 Ma. About 10 Ma the land bridge was briefly near-complete, allowing some interchange of land mammals between the continents. By 7 Ma, the rising sill had split deeper-water populations. Sea temperature, salinity and sedimentary carbon content had begun to increase in the Southern Caribbean, but not the Pacific. By 4 Ma, the seaway's narrowing began to extinguish Caribbean upwellings. By 2 Ma, upwellings remained only along Venezuela; Caribbean plankton, suspension-feeding molluscs and their predators had declined sharply, largely replaced by bottom-dwelling corals and calcareous algae and magnificent coral reefs. Closing the seaway extinguished the Eastern Pacific's reef corals (successors recolonized from the Indo-Pacific 6000 years ago), whereas many molluscs of productive waters that once thrived in the Caribbean now survive only in the Eastern Pacific. The present-day productive Eastern Pacific, with few, small coral reefs and a plankton-based ecosystem contrasts with the Caribbean, whose clear water favours expansive coral reefs and bottom-dwelling primary producers. These ecosystems reflect the trade-off between fast growth and effective defence with attendant longevity. Overfishing with new technologies during the last few centuries, however, has caused population crashes of ever-smaller marine animals, devastating Caribbean ecosystems.
    Biological Reviews 07/2013; · 10.26 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Caviomorph rodents represent an excellent model to explore morphological diversification on a macroevolutionary scale, as they are ecologically and morphologically diverse. We analysed cranial shape variation using geometric morphometrics and phylogenetic comparative methods. Most variation involved the shape of the rostrum, basicranium, and cranial vault, and clearly matched the phylogenetic structure. At the same time, a strong allometric pattern was associated with the length of the rostrum and cranial vault, size of the auditory bulla, and depth of the zygomatic arch. After accounting for size influence, and taking phylogenetic structure into account, shape variation was significantly associated with habitat. Our results highlight the presence of complex relationships between morphological, phylogenetic, and ecological dimensions in the diversification of the caviomorph cranium
    Biological Journal of the Linnean Society 10/2013; · 2.41 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The island rule entails a modification of the body size of insular mammals, a character related with numerous biological and ecological variables. From the Miocene to human colonization (Holocene), Mediterranean and Canary Islands were unaltered natural ecosystems, with paleofaunas formed with endemic giant rodents among other mammals. Our aim is to create methods to estimate the body masses of fossil island rodents and address the nature of ecological pressures driving the island rule. We created regression equations based on extant rodent data and used these to estimate the body masses of the extinct species. Our results show strong correlations between teeth, cranial and postcranial measurements and body mass, except for the length of the long bones, the transversal diameter of the distal tibia and the anteroposterior diameter of the proximal tibia, where the equations were less reliable. The use of equations obtained from a more homogeneous group (suborder and family) is preferable when analyzing the area of the first molar. The new regressions were applied to estimate the body masses of some Mediterranean and Canarian fossil rodents (Canariomys, C. bravoi 1.5 kg and C. tamarani 1 kg; Hypnomys, H. morpheus 230 g and H. onicensis 200 g; and Muscardinus cyclopeus 100 g). Our results indicate that under absence of predation, resource availability (island area) is the key factor that determines the size of the Canariomys sp. However, under presence of specialized predators (birds of prey), body size evolution is less pronounced (Hypnomys sp.).
    Integrative Zoology 03/2014; 9(2):197-212. · 1.29 Impact Factor

Full-text (2 Sources)

Available from
May 16, 2014