Apolipoprotein D expression in human brain reactive astrocytes.

Departamento de Morfología y Biología Celular, Facultad de Biología y Medicina, Universidad de Oviedo, España.
Journal of Histochemistry and Cytochemistry (Impact Factor: 2.26). 11/2003; 51(10):1285-90. DOI: 10.1177/002215540305101005
Source: PubMed

ABSTRACT Astrocytosis is a hallmark of damage that frequently occurs during aging in human brain. Astrocytes proliferate in elderly subjects, becoming hypertrophic and highly immunoreactive for glial fibrillary acidic protein (GFAP). These cells are one type that actively responds in the repair and reorganization of damage to the neural parenchyma and are a source of several peptides and growth factors. One of these biomolecules is apolipoprotein D (apo D), a member of the lipocalin family implicated in the transport of small hydrophobic molecules. Although the role of apo D is unknown, increments in brain apo D expression have been observed in association with aging and with some types of neuropathology. We have found an overexpression of apo D mRNA in reactive astrocytes by in situ hybridization in combination with immunohistochemistry for apo D in normal aged human brains. The number of double-labeled cells varied according to the cerebral area and the gliosis grade. The possible significance of this increased synthesis of apo D in reactive astrocytes is discussed in relation to the role of apo D in aging and in glial function.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Lipoproteins in the central nervous system (CNS) are not incorporated from the blood but are formed mainly by glial cells within the CNS. In addition, cholesterol in the CNS is synthesized endogenously because the blood-brain barrier segregates the CNS from the peripheral circulation. Apolipoprotein (apo) E is a major apo in the CNS. In normal condition, apo E is secreted from glia, mainly from astrocytes, and forms cholesterol-rich lipoproteins by ATP-binding cassette transporters. Subsequently, apo E-containing glial lipoproteins supply cholesterol and other components to neurons via a receptor-mediated process. Recent findings demonstrated that receptors of the low density lipoprotein (LDL) receptor family not only internalize lipoproteins into the cells but also, like signaling receptors, transduce signals upon binding the ligands. In this review, the regulation of lipid homeostasis will be discussed as well as roles of lipoproteins and functions of receptors of LDL receptor family in the CNS. Furthermore, the relation between lipid metabolism and Alzheimer's disease (AD) is discussed.
    Biological & Pharmaceutical Bulletin 01/2011; 34(4):453-61. · 1.85 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Alzheimer's disease (AD) is the most common neurodegenerative disorder, affecting millions of people worldwide. Apart from age, the major risk factor identified so far for the sporadic form of AD is possession of the epsilon4 allele of apolipoprotein E (APOE), which is also a risk factor for coronary artery disease (CAD). Other apolipoproteins known to play an important role in CAD such as apolipoprotein B are now gaining attention for their role in AD as well. AD and CAD share other risk factors, such as altered cholesterol levels, particularly high levels of low density lipoproteins together with low levels of high density lipoproteins. Statins--drugs that have been used to lower cholesterol levels in CAD, have been shown to protect against AD, although the protective mechanism(s) involved are still under debate. Enzymatic production of the beta amyloid peptide, the peptide thought to play a major role in AD pathogenesis, is affected by membrane cholesterol levels. In addition, polymorphisms in several proteins and enzymes involved in cholesterol and lipoprotein transport and metabolism have been linked to risk of AD. Taken together, these findings provide strong evidence that changes in cholesterol metabolism are intimately involved in AD pathogenic processes. This paper reviews cholesterol metabolism and transport, as well as those aspects of cholesterol metabolism that have been linked with AD.
    Journal of Neurochemistry 12/2009; 111(6):1275-308. · 3.97 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Glia are traditionally known as support cells for neurons, and their role in neurodegeneration has been largely considered secondary to neuronal dysfunction. We review newer concepts on glial function and assess glial changes in Parkinson's disease (PD) at the time of disease initiation when α-synuclein is accumulating in brain tissue but there is limited neuronal loss, and also as the disease progresses and neuronal loss is evident. Of the two main types of astrocytes, only protoplasmic astrocytes are involved in PD, where they become nonreactive and accumulate α-synuclein. Experimental evidence has shown that astrocytic α-synuclein deposition initiates the noncell autonomous killing of neurons through microglial signaling. As the disease progresses, more protoplasmic astrocytes are affected by the disease with an increasing microglial response. Although there is still controversy on the role microglia play in neurodegeneration, there is evidence that microglia are activated early in PD and possibly assist with the clearance of extracellular α-synuclein at this time. Microglia transform to phagocytes and target neurons as the disease progresses but appear to become dysfunctional with increasing amounts of ingested debris. Only nonmyelinating oligodendroglial cells are affected in PD, and only late in the disease process. Glial cells are responsible for the progression of PD and play an important role in initiating the early tissue response. In particular, early dysfunction and α-synuclein accumulation in astrocytes causes recruitment of phagocytic microglia that attack selected neurons in restricted brain regions causing the clinical symptoms of PD.
    Movement Disorders 01/2011; 26(1):6-17. · 5.63 Impact Factor


Available from
May 21, 2014