Phospholipid-based signaling in plants.

Swammerdam Institute for Life Sciences, Department of Plant Physiology, University of Amsterdam, NL-1098 SM Amsterdam, The Netherlands.
Annual review of plant biology (Impact Factor: 18.9). 02/2003; 54:265-306. DOI: 10.1146/annurev.arplant.54.031902.134748
Source: PubMed

ABSTRACT Phospholipids are emerging as novel second messengers in plant cells. They are rapidly formed in response to a variety of stimuli via the activation of lipid kinases or phospholipases. These lipid signals can activate enzymes or recruit proteins to membranes via distinct lipid-binding domains, where the local increase in concentration promotes interactions and downstream signaling. Here, the latest developments in phospholipid-based signaling are discussed, including the lipid kinases and phospholipases that are activated, the signals they produce, the domains that bind them, the downstream targets that contain them and the processes they control.

Download full-text


Available from: Harold J G Meijer, Jul 02, 2015
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: All along their life, plants and trees are exposed to various stresses, and particularly to abiotic ones. Ozone (O3) is one of the most important air pollutants, whose ground levels keep increasing as a result of climate change. High O3 concentrations deeply affect plants and cells, and impact worldwide crop and forest production. In plant leaves, O3 directly interferes with surface tissues or reaches mesophyll cells through stomata. In this case, O3 is almost immediately degraded into reactive oxygen species (ROS) in the apoplastic space of plant cells. For plants to acclimate to O3, the O3 stress signal has to be perceived at the cellular level and relayed to the nucleus to lead to cell reprogramming. The aim of this review is to focus on different O3-sensing localizations, i.e., epicuticular waxes, the cell wall and the plasma membrane, and to detail the different early signaling components related to these sites – in particular lipids, membrane proteins (G proteins, NADPH oxidases and ion channels) and MAP kinases. Finally, some interesting putative membrane-related O3 signaling components are presented as clues to be validated in future investigations.
    Environmental and Experimental Botany 06/2015; 114. DOI:10.1016/j.envexpbot.2014.11.012 · 3.00 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Successful establishment and maintenance of cell polarity is crucial for many aspects of plant development, cellular morphogenesis, response to pathogen attack, and reproduction. Polar cell growth depends on integrating membrane and cell-wall dynamics with signal transduction pathways, changes in ion membrane transport, and regulation of vectorial vesicle trafficking and the dynamic actin cytoskeleton. In this review, we address the critical importance of protein-membrane crosstalk in the determination of plant cell polarity and summarize the role of membrane lipids, particularly minor acidic phospholipids, in regulation of the membrane traffic. We focus on the protein-membrane interface dynamics and discuss the current state of knowledge on three partially overlapping levels of descriptions. Finally, due to their multiscale and interdisciplinary nature, we stress the crucial importance of combining different strategies ranging from microscopic methods to computational modelling in protein-membrane studies. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email:
    Journal of Experimental Botany 02/2015; DOI:10.1093/jxb/erv052 · 5.79 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Aluminum ions (Al) have been recognized as a major toxic factor for crop production in acidic soils. The first indication of the Al toxicity in plants is the cessation of root growth, but the mechanism of root growth inhibition is largely unknown. Here we examined the impact of Al on the expression, activity and function of the non-specific phospholipase C4 (NPC4), a plasma membrane-bound isoform of NPC, a member of the plant phospholipase family, in Arabidopsis thaliana. We observed a lower expression of NPC4 using GUS assay and a decreased formation of labeled diacylglycerol, product of NPC activity, using fluorescently labeled phosphatidylcholine as a phospholipase substrate in Arabidopsis WT seedlings treated with AlCl3 for 2 h. The effect on in situ NPC activity persisted for longer Al treatment periods (8, 14 h). Interestingly, in seedlings overexpressing NPC4, the Al-mediated NPC-inhibiting effect was alleviated at 14 h. However, in vitro activity and localization of NPC4 were not affected by Al, thus excluding direct inhibition by Al ions or possible translocation of NPC4 as the mechanisms involved in NPC-inhibiting effect. Furthermore, the growth of tobacco pollen tubes rapidly arrested by Al was partially rescued by the overexpression of AtNPC4 while Arabidopsis npc4 knockout lines were found to be more sensitive to Al stress during long-term exposure of Al at low phosphate conditions. Our observations suggest that NPC4 plays a role in both early and long-term responses to Al stress.
    Frontiers in Plant Science 02/2015; 6:66. DOI:10.3389/fpls.2015.00066 · 3.64 Impact Factor