Effects of cell proliferation on the uptake of transferrin-bound iron by human hepatoma cells

Department of Physiology, School of Biomedical and Chemical Sciences, The University of Western Australia, Crawley, Western Australia, Australia.
Hepatology (Impact Factor: 11.06). 11/2003; 38(4):967-77. DOI: 10.1053/jhep.2003.50422
Source: PubMed


The effects of cellular proliferation on the uptake of transferrin-bound iron (Tf-Fe) and expression of transferrin receptor-1 (TfR1) and transferrin receptor-2 (TfR2) were investigated using a human hepatoma (HuH7) cell line stably transfected with TfR1 antisense RNA expression vector to suppress TfR1 expression. At transferrin (Tf) concentrations of 50 nmol/L and 5 micromol/L, when Tf-Fe uptake occurs by the TfR1- and TfR1-independent (NTfR1)-mediated process, respectively, the rate of Fe uptake by proliferating cells was approximately 250% that of stationary cells. The maximum rate of Fe uptake by the TfR1- and NTfR1-mediated process by proliferating cells was increased to 200% and 300% that of stationary cells, respectively. The maximum binding of Tf by both TfR1- and NTfR1-mediated processes by proliferating cells was increased significantly to 160% that of stationary cells. TfR1 and TfR2-alpha protein levels expressed by proliferating cells was observed to be approximately 300% and 200% greater than the stationary cells, respectively. During the proliferating growth phase, expression of TfR1 messenger RNA (mRNA) increased to 300% whereas TfR2-alpha mRNA decreased to 50% that of stationary cells. In conclusion, an increase in Tf-Fe uptake by TfR1-mediated pathway by proliferating cells was associated with increased TfR1 mRNA and protein expression. An increase in Tf-Fe uptake by NTfR1-mediated pathway was correlated with an increase in TfR2-alpha protein expression but not TfR2-alpha mRNA. In conclusion, TfR2-alpha protein is likely to have a role in the mediation of Tf-Fe uptake by the NTfR1 process by HuH7 hepatoma cell in proliferating and stationary stages of growth.

10 Reads
  • Source
    • "The regulation of TFR2 is linked to the cell cycle, with proliferating cells expressing approximately twice as many receptors as stationary cells [34]. These previous reports suggest that TFR2 may possess an additional function. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Interleukin-32 (IL-32) is an inflammatory cytokine, and its activity is associated with various auto-inflammatory disorders as well as infectious pathogens such as Mycobacterium tuberculosis, and viral infections. However, the precise antiviral mechanism of IL-32 remains unclear. We assessed the IL-32 level in the sera of H1N1 influenza A patients and IL-32 level was significantly elevated. Next we examined the antiviral activity of recombinant IL-32γ (rIL-32γ) with WISH cells infected by vesicular stomatitis virus (VSV) but no antiviral activity was observed. Therefore we investigated the supernatant of rIL-32-treated THP-1 cells since this cell line effectively responded to rIL-32γ. The supernatant of rIL-32-treated THP-1 cell possessed an antiviral effect and in addition, an agonistic monoclonal antibody further enhanced a specific antiviral activity of rIL-32γ. The fractionation and mass spectrometer analysis of the THP-1 cell supernatant revealed that the antiviral activity of rIL-32γ is via a THP-1 cell-produced factor, transferrin, rather than the direct effects of rIL-32γ on epithelial cells. We also characterized a secreted soluble IL-32γ protein in serum of IL-32γ transgenic mouse (TG), but not in that of IL-32α TG. The present results suggest that IL-32γ expression and its genetic variation in individual could be an important aspect of viral infections.
    Cytokine 04/2012; 58(1):79-86. DOI:10.1016/j.cyto.2011.12.024 · 2.66 Impact Factor
  • Gaceta medica de Mexico 129(5):347-50. · 0.27 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Hereditary hemochromatosis (HH) is an iron-overload disorder caused by a C282Y mutation in the HFE gene. In HH, plasma nontransferrin-bound iron (NTBI) levels are increased and NTBI is bound mainly by citrate. The aim of this study was to examine the importance of NTBI in the pathogenesis of hepatic iron loading in Hfe knockout mice. Plasma NTBI levels were increased 2.5-fold in Hfe knockout mice compared with control mice. Total ferric citrate uptake by hepatocytes isolated from Hfe knockout mice (34.1 +/- 2.8 pmol Fe/mg protein/min) increased by 2-fold compared with control mice (17.8 +/- 2.7 pmol Fe/mg protein/min; P <.001; mean +/- SEM; n = 7). Ferrous ion chelators, bathophenanthroline disulfonate, and 2',2-bipyridine inhibited ferric citrate uptake by hepatocytes from both mouse types. Divalent metal ions inhibited ferric citrate uptake by hepatocytes, as did diferric transferrin. Divalent metal transporter 1 (DMT1) mRNA and protein expression was increased approximately 2-fold by hepatocytes from Hfe knockout mice. We conclude that NTBI uptake by hepatocytes from Hfe knockout mice contributed to hepatic iron loading. Ferric ion was reduced to ferrous ion and taken up by hepatocytes by a pathway shared with diferric transferrin. Inhibition of uptake by divalent metals and up-regulation of DMT1 expression suggested that NTBI uptake was mediated by DMT1.
    Blood 10/2004; 104(5):1519-25. DOI:10.1182/blood-2003-11-3872 · 10.45 Impact Factor
Show more


10 Reads