Article

Gene expression pattern analysis of the tight junction protein, Claudin, in the early morphogenesis of Xenopus embryos.

Department of Biological Sciences, Graduate School of Science, University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033, Japan.
Mechanisms of Development (Impact Factor: 2.38). 01/2003; 119 Suppl 1:S27-30. DOI:10.1016/S0925-4773(02)00348-9
Source: PubMed

ABSTRACT To study how epithelial layers are formed during early development in Xenopus embryos, we have focused on Claudin, the major component of the tight junction. So far, 19 claudin genes have been found in the mouse, expressed in different epithelial tissues. However, though a number of cytological studies have been done for the roles of Claudins, their expression patterns and functions during early embryogenesis are largely unknown. We found three novel Xenopus claudin genes, which are referred to as claudin-4L1, -4L2, and -7L1. At the early gastrula stage, claudin-4L1, -4L2, and -7L1 mRNAs were detected in the ectoderm and in the mesoderm. At the late gastrula stage, claudin mRNAs were detected in the ectoderm through the involuting archenteron roof. At the neurula stage, claudin-4L1/4L2 and -7L1 mRNAs were differentially expressed in the neural groove and the epidermal ectoderm. At the tailbud stage, the claudin mRNAs were found in the branchial arches, the otic vesicles, the sensorial layer of the epidermis, and along the dorsal midline of the neural tube. In addition, claudin-4L1/4L2 mRNAs were detected in the pronephros and the endoderm, whereas claudin-7L1 mRNA was observed in the epithelial layer of the epidermis.

0 0
 · 
0 Bookmarks
 · 
40 Views
  • [show abstract] [hide abstract]
    ABSTRACT: Claudins are the structural and molecular building blocks of tight junctions. Individual cells express more than one claudin family member, which suggests that a combinatorial claudin code that imparts flexibility and dynamic regulation of tight junction function could exist. Although we have learned much from manipulating claudin expression and function in cell lines, loss-of-function and gain-of-function experiments in animal model systems are essential for understanding how claudin-based boundaries function in the context of a living embryo and/or tissue. These in vivo manipulations have pointed to roles for claudins in maintaining the epithelial integrity of cell layers, establishing micro-environments and contributing to the overall shape of an embryo or tissue. In addition, loss-of-function mutations in combination with the characterization of mutations in human disease have demonstrated the importance of claudins in regulating paracellular transport of solutes and water during normal physiological states. In this review, we will discuss specific examples of in vivo studies that illustrate the function of claudin family members during development and in disease.
    Clinical Genetics 04/2010; 77(4):314-25. · 4.25 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: Claudin 1 is one of the tight junctional proteins involved in the tight sealing of the cellular sheets and plays a crucial role in the maintenance of cell polarity. Although its structure and physiological function in intercellular adhesion is relatively well understood, we have little information about its possible involvement in early development of vertebrates. We found Xclaudin 1 is expressed maternally in the oocyte of Xenopus laevis and the zygotic expression initiates stage 9 in the animal hemisphere but not in the vegetal hemisphere, limited on the ectoderm and mesoderm until the end of gastrulation. We have investigated a potential role for claudin 1 at gastrulation by gain and loss-of-function studies. Over-expression of Xclaudin 1 resulted in gastrulation defect in a dose-dependent manner. Knockdown of Xclaudin 1 by antisense morpholino oligonucleotides (MOs) blocked convergent extension, whereas ectopic expression of Xclaudin 1-myc mRNA rescued these defects. However, altered expression of Xclaudin 1 did not inhibit mesodermal gene expression. Taken together, our results suggest that Xclaudin 1 is required for proper convergent extension movement during Xenopus gastrulation.
    Biochemical and Biophysical Research Communications 06/2010; 397(1):75-81. · 2.41 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: Claudin proteins are the major components of tight junctions connecting adjacent cells, where they regulate a variety of cellular activities. In the present paper we identified two Xenopus claudin5 genes (cldn5a and 5b), which are expressed early in the developing cardiac region. Precocious cldn5 expression was observed in explants of non-heart-forming mesoderm under inhibition of the canonical Wnt pathway. Cardiogenesis was severely perturbed by antisense oligonucleotides against cldn5 or by Cldn5 proteins lacking the cytoplasmic domain. Results of light- and electron-microscopic observations suggested that cldn5a and 5b are required for Xenopus heart tube formation through epithelialization of the precardiac mesoderm.
    Embryologia 09/2010; 52(7):665-75. · 2.21 Impact Factor

Full-text

View
0 Downloads
Available from

Makiko Fujita