DNA Vaccine for West Nile Virus Infection in Fish Crows (Corvus ossifragus)

Department of Vector Assessment, U.S. Army Medical Research Institute of Infectious Diseases, Fort Detrick, Maryland 21702-5011, USA.
Emerging infectious diseases (Impact Factor: 7.33). 10/2003; 9(9):1077-81. DOI: 10.3201/eid0909.030025
Source: PubMed

ABSTRACT A DNA vaccine for West Nile virus (WNV) was evaluated to determine whether its use could protect fish crows (Corvus ossifragus) from fatal WNV infection. Captured adult crows were given 0.5 mg of the DNA vaccine either orally or by intramuscular (IM) inoculation; control crows were inoculated or orally exposed to a placebo. After 6 weeks, crows were challenged subcutaneously with 105 plaque-forming units of WNV (New York 1999 strain). None of the placebo inoculated-placebo challenged birds died. While none of the 9 IM vaccine-inoculated birds died, 5 of 10 placebo-inoculated and 4 of 8 orally vaccinated birds died within 15 days after challenge. Peak viremia titers in birds with fatal WNV infection were substantially higher than those in birds that survived infection. Although oral administration of a single DNA vaccine dose failed to elicit an immune response or protect crows from WNV infection, IM administration of a single dose prevented death and was associated with reduced viremia.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: West Nile virus (WNV) can lead to fatal diseases in raptor species. Unfortunately, there is no vaccine which has been designed specifically for use in breeding stocks of falcons. Therefore the immunogenicity and protective capacity of two commercially available WNV vaccines, both approved for use in horses, were evaluated in large falcons. One vaccine contained adjuvanted inactivated WNV lineage 1 immunogens, while the second represented a canarypox recombinant live virus vector vaccine. The efficacy of different vaccination regimes for these two vaccines was assessed serologically and by challenging the falcons with a WNV strain of homologous lineage 1. Our studies show that the recombinant vaccine conveys a slightly better protection than the inactivated vaccine, but moderate (recombinant vaccine) or weak (inactivated vaccine) side effects were observed at the injection sites. Using the recommended 2-dose regimen, both vaccines elicited only sub-optimal antibody responses and gave only partial protection following WNV challenge. Better results were obtained for both vaccines after a third dose, i.e. alleviation of clinical signs, absence of fatalities and reduction of virus shedding and viraemia. Therefore the consequences of WNV infections in falcons can be clearly alleviated by vaccination, especially if the amended triple administration scheme is used, although side effects at the vaccination site must be accepted.
    Veterinary Research 04/2014; 45(1):41. DOI:10.1186/1297-9716-45-41 · 3.38 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Advantages of DNA vaccination against infectious diseases over more classical immunization methods include the possibilities for rapid manufacture, fast adaptation to newly emerging pathogens and high stability at ambient temperatures. In addition, upon DNA immunization the antigen is produced by the cells of the vaccinated individual, which leads to activation of both cellular and humoral immune responses due to antigen presentation via MHC I and MHC II molecules. However, so far DNA vaccines have shown most efficient immunogenicity mainly in small rodent models, whereas in larger animals including humans there is still the need to improve effectiveness. This is mostly due to inefficient delivery of the DNA plasmid into cells and nuclei. Here, we discuss technologies used to overcome this problem, including physical means such as in vivo electroporation and co-administration of adjuvants. Several of these methods have already entered clinical testing in humans.
    01/2015; 4(1):1-10. DOI:10.7774/cevr.2015.4.1.1
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Traditional prophylactic vaccination to prevent illness is the primary objective of many research activities worldwide. The golden age of vaccination began with an approach called variolation in ancient China and the evolution of vaccines still continues today with modern developments such as the production of Gardasil(TM) against HPV and cervical cancer. The historical aspect of how different forms of vaccination have changed the face of medicine and communities is important as it dictates our future approaches on both a local and global scale. From the eradication of smallpox to the use of an experimental vaccine to save a species, this review will explore these successes in infectious disease vaccination and also discuss a few significant failures which have hampered our efforts to eradicate certain diseases. The second part of the review will explore designing a prophylactic vaccine for the growing global health concern that is allergy. Allergies are an emerging global health burden. Of particular concern is the rise of food allergies in developed countries where 1 in 10 children is currently affected. The formation of an allergic response results from the recognition of a foreign component by our immune system that is usually encountered on a regular basis. This may be a dust-mite or a prawn but this inappropriate immune response can result in a life-time of food avoidance and lifestyle restrictions. These foreign components are very similar to antigens derived from infectious pathogens. The question arises: should the allergy community be focussing on protective measures rather than ongoing therapeutic interventions to deal with these chronic inflammatory conditions? We will explore the difficulties and benefits of prophylactic vaccination against various allergens by means of genetic technology that will dictate how vaccination against allergens could be utilized in the near future.
    Frontiers in Microbiology 07/2014; 5:365. DOI:10.3389/fmicb.2014.00365 · 3.94 Impact Factor

Full-text (3 Sources)

Available from
May 30, 2014