DNA vaccine for West Nile virus infection in fish crows (Corvus ossifragus).

Department of Vector Assessment, U.S. Army Medical Research Institute of Infectious Diseases, Fort Detrick, Maryland 21702-5011, USA.
Emerging infectious diseases (Impact Factor: 5.99). 10/2003; 9(9):1077-81. DOI: 10.3201/eid0909.030025
Source: PubMed

ABSTRACT A DNA vaccine for West Nile virus (WNV) was evaluated to determine whether its use could protect fish crows (Corvus ossifragus) from fatal WNV infection. Captured adult crows were given 0.5 mg of the DNA vaccine either orally or by intramuscular (IM) inoculation; control crows were inoculated or orally exposed to a placebo. After 6 weeks, crows were challenged subcutaneously with 105 plaque-forming units of WNV (New York 1999 strain). None of the placebo inoculated-placebo challenged birds died. While none of the 9 IM vaccine-inoculated birds died, 5 of 10 placebo-inoculated and 4 of 8 orally vaccinated birds died within 15 days after challenge. Peak viremia titers in birds with fatal WNV infection were substantially higher than those in birds that survived infection. Although oral administration of a single DNA vaccine dose failed to elicit an immune response or protect crows from WNV infection, IM administration of a single dose prevented death and was associated with reduced viremia.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: West Nile virus (WNV) can lead to fatal diseases in raptor species. Unfortunately, there is no vaccine which has been designed specifically for use in breeding stocks of falcons. Therefore the immunogenicity and protective capacity of two commercially available WNV vaccines, both approved for use in horses, were evaluated in large falcons. One vaccine contained adjuvanted inactivated WNV lineage 1 immunogens, while the second represented a canarypox recombinant live virus vector vaccine. The efficacy of different vaccination regimes for these two vaccines was assessed serologically and by challenging the falcons with a WNV strain of homologous lineage 1. Our studies show that the recombinant vaccine conveys a slightly better protection than the inactivated vaccine, but moderate (recombinant vaccine) or weak (inactivated vaccine) side effects were observed at the injection sites. Using the recommended 2-dose regimen, both vaccines elicited only sub-optimal antibody responses and gave only partial protection following WNV challenge. Better results were obtained for both vaccines after a third dose, i.e. alleviation of clinical signs, absence of fatalities and reduction of virus shedding and viraemia. Therefore the consequences of WNV infections in falcons can be clearly alleviated by vaccination, especially if the amended triple administration scheme is used, although side effects at the vaccination site must be accepted.
    Veterinary Research 04/2014; 45(1):41. · 3.43 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: West Nile virus (WNV) is maintained in nature in an enzootic transmission cycle between birds and mosquitoes, although it occasionally infects other vertebrates, including humans, in which it may result fatal. To date, no licensed vaccines against WNV infection are available for birds, but its availability would certainly benefit certain populations, as birds grown for restocking, hunting activities, or alimentary purposes, and those confined to wildlife reservations and recreation installations. We have tested the protective capability of WNV envelope recombinant (rE) protein in red-legged partridges (Alectoris rufa). Birds (n=28) were intramuscularly immunized three times at 2-weeks interval with rE and a control group (n=29) was sham-immunized. Except for 5 sham-immunized birds that were not infected and housed as contact controls, partridges were subcutaneously challenged with WNV. Oropharyngeal and cloacal swabs and feather pulps were collected at several days after infection and blood samples were taken during vaccination and after infection. All rE-vaccinated partridges elicited anti-WNV antibodies before challenge and survived to the infection, while 33.3% of the sham-immunized birds succumbed, as did 25% of the contact animals. Most (84%) unvaccinated birds showed viremia 3 d.p.i., but virus was only detected in 14% of the rE vaccinated birds. WNV-RNA was detected in feathers and swabs from sham-immunized partridges from 3 to 7 d.p.i., mainly in birds that succumbed to the infection, but not in rE vaccinated birds. Thus, rE vaccination fully protected partridges against WND and reduced the risk of virus spread.
    Vaccine 08/2013; · 3.77 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: During the last three years Greece is experiencing the emergence of West Nile virus (WNV) epidemics. Within this framework, an integrated surveillance and control programme (MALWEST project) with thirteen associate partners was launched aiming to investigate the disease and suggest appropriate interventions. One out of seven work packages of the project is dedicated to the State of the Art report for WNV. Three expert working groups on humans, animals and mosquitoes were established. Medical databases (PubMed, Scopus) were searched together with websites: e.g., WHO, CDC, ECDC. In total, 1,092 relevant articles were initially identified and 258 of them were finally included as references regarding the current knowledge about WNV, along with 36 additional sources (conference papers, reports, book chapters). The review is divided in three sections according to the fields of interest: (1) WNV in humans (epidemiology, molecular characteristics, transmission, diagnosis, treatment, prevention, surveillance); (2) WNV in animals (epidemiological and transmission characteristics concerning birds, horses, reptiles and other animal species) and (3) WNV in mosquitoes (control, surveillance). Finally, some examples of integrated surveillance programmes are presented. The introduction and establishment of the disease in Greece and other European countries further emphasizes the need for thorough research and broadening of our knowledge on this viral pathogen.
    International Journal of Environmental Research and Public Health 01/2013; 10(12):6534-610. · 2.00 Impact Factor

Full-text (3 Sources)

Available from
May 30, 2014