Presynaptic Activation of Silent Synapses and Growth of New Synapses Contribute to Intermediate and Long-Term Facilitation in Aplysia

Howard Hughes Medical Institute, Columbia University, New York, NY 10032, USA.
Neuron (Impact Factor: 15.98). 10/2003; 40(1):151-65. DOI: 10.1016/S0896-6273(03)00595-6
Source: PubMed

ABSTRACT The time course and functional significance of the structural changes associated with long-term facilitation of Aplysia sensory to motor neuron synaptic connections in culture were examined by time-lapse confocal imaging of individual sensory neuron varicosities labeled with three different fluorescent markers: the whole-cell marker Alexa-594 and two presynaptic marker proteins-synaptophysin-eGFP to monitor changes in synaptic vesicle distribution and synapto-PHluorin to monitor active transmitter release sites. Repeated pulses of serotonin induce two temporally, morphologically, and molecularly distinct presynaptic changes: (1) a rapid activation of silent presynaptic terminals by filling of preexisting empty varicosities with synaptic vesicles, which parallels intermediate-term facilitation, is completed within 3-6 hr and requires translation but not transcription and (2) a slower generation of new functional varicosities which occurs between 12-18 hr and requires transcription and translation. Enrichment of empty varicosities with synaptophysin accounts for 32% of the newly activated synapses at 24 hr, whereas newly formed varicosities account for 68%.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Presynaptic structural modifications are thought to accompany activity-dependent synaptic plasticity and learning. This may involve the conversion of nonfunctional synapses into active ones or the generation of entirely new synapses. Here, using an in vitro neural analog of classical conditioning, we investigated presynaptic structural changes restricted to auditory nerve synapses that convey the conditioned stimulus (CS) by tract tracing using fluorescent tracers combined with immunostaining for the synaptic vesicle-associated protein synaptophysin. The results show that the size of presynaptic auditory boutons increased and the area and fluorescence intensity of punctate staining for synaptophysin were enhanced after conditioning. This occurred only for auditory nerve boutons apposed to the dendrites but not the somata of abducens motor neurons. Conditioning increased the percentage of boutons that were immunopositive for synaptophysin and enhanced the number of synaptophysin puncta they contained. Pretreatment with antibodies against brain-derived neurotrophic factor (BDNF) inhibited these conditioning-induced structural changes. There was also a net increase in the number of boutons apposed to abducens motor neurons after conditioning or BDNF treatment. These data indicate that the rapid enrichment of presynaptic boutons with proteins required for neurotransmitter recycling and release occurs during classical conditioning and that these processes are mediated by BDNF.
    Neuroscience 12/2011; 203:50-8. DOI:10.1016/j.neuroscience.2011.12.015 · 3.33 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Neurexin and neuroligin, which undergo heterophilic interactions with each other at the synapse, are mutated in some patients with autism spectrum disorder, a set of disorders characterized by deficits in social and emotional learning. We have explored the role of neurexin and neuroligin at sensory-to-motor neuron synapses of the gill-withdrawal reflex in Aplysia, which undergoes sensitization, a simple form of learned fear. We find that depleting neurexin in the presynaptic sensory neuron or neuroligin in the postsynaptic motor neuron abolishes both long-term facilitation and the associated presynaptic growth induced by repeated pulses of serotonin. Moreover, introduction into the motor neuron of the R451C mutation of neuroligin-3 linked to autism spectrum disorder blocks both intermediate-term and long-term facilitation. Our results suggest that activity-dependent regulation of the neurexin-neuroligin interaction may govern transsynaptic signaling required for the storage of long-term memory, including emotional memory that may be impaired in autism spectrum disorder.
    Neuron 05/2011; 70(3):468-81. DOI:10.1016/j.neuron.2011.03.020 · 15.98 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Presynaptic long term potentiation of synaptic transmission activates silent synapses and potentiates existing active synapses. We sought to visualise these two processes by studying the cAMP-dependent protein kinase (PKA) potentiation of presynaptic vesicle cycling in cultured cerebellar granule neurons.Using FM dyes to label the pool of recycling synaptic vesicles,we found that trains of electrical stimulation which do not potentiate already active synapses are sufficient to rapidly activate a discrete population comprising silent and very low activity synapses. Silent synapse activation required PKA activity and conversely, active synapses could be silenced by PKA inhibition. Surprisingly, the recycling pool of synaptic vesicles in recently activated synapses was larger than in already active synapses and equivalent to synapses treated with forskolin. Imaging of synaptic vesicle cycling and cytosolic Ca(2+) in individual nerve terminals confirmed that silent synapses have evoked Ca(2+) transients comparable to those of active synapses. Furthermore, across populations of active synapses, changes in Ca(2+) influx did not correlate with changes in the size of the pool of recycling synaptic vesicles. Finally, we found that stimulation of synapsin phosphorylation, but not RIM1α, by PKA was frequency dependent and long lasting. These data are consistent with the idea that PKA regulates synaptic vesicle recycling downstream of Ca(2+) influx and that this pathway is highly active in recently activated synapses.
    The Journal of Physiology 04/2011; 589(Pt 8):1943-55. DOI:10.1113/jphysiol.2010.200477 · 4.54 Impact Factor


Available from