In vitro fermentation characteristics of selected oligosaccharides by swine fecal microflora.

Department of Animal Sciences, University of Illinois, Urbana 61801, USA.
Journal of Animal Science (Impact Factor: 2.09). 10/2003; 81(10):2505-14.
Source: PubMed

ABSTRACT The objective of this study was to quantify the fermentation characteristics of oligosaccharides present in feed ingredients or isolated for dietary supplementation. Substrates studied included short-chain fructooligosaccharides, medium-chain fructooligosaccharides, long-chain fructooligosaccharides, raffinose, stachyose, soy solubles, granular and liquid forms of transgalactooligosaccharides, glucooligosaccharides, mannanoligosaccharides, and xylooligosaccharides. Three healthy pigs that had never received antibiotics served as sources of fecal inoculum. Each substrate was fermented in vitro; samples were taken at 0, 2, 4, 8, and 12 h, and pH change and short-chain fatty acid (SCFA) and gas production determined. Gas production at 12 h did not differ (P > 0.05) among all fructooligosaccharides, transgalactooligosaccharides, soy solubles, and xylooligosaccharides. Raffinose, stachyose, and raffinose + stachyose fermentation resulted in the greatest (P < 0.05) gas production at 12 h of all substrates tested. The rate of gas production was greatest (P < 0.05) for stachyose and least (P < 0.05) for glucooligosaccharides and mannanoligosaccharides. Substrate did not affect (P > 0.05) time to attain maximal rate of gas production. The pH at 12 h for all fructooligosaccharides and xylooligosaccharides did not differ (P > 0.05). The pH values at 12 h for raffinose, stachyose, and raffinose + stachyose were highest (P < 0.05) compared with all other substrates. Total SCFA production at 12 h was similar for all fructooligosaccharides and transgalactooligosaccharides, glucooligosaccharides, and soy solubles. Total SCFA production was greatest (P < 0.05) for xylooligosaccharides, stachyose, and raffinose + stachyose, and least (P < 0.05) for mannanoligosaccharides and raffinose. Stachyose fermentation resulted in the greatest (P < 0.05) rate and earliest time to attain maximal rate of SCFA production. All oligosaccharides studied were readily fermentable but varied in amount and type of SCFA produced. Fermentation of the pure forms of oligosaccharides contained in soy solubles resulted in greater gas production and higher pH compared with soy solubles. The oligosaccharides in the soy solubles matrix seemed to behave differently than their pure counterparts. The high rates of fermentation of most oligosaccharides tested indicate that they may serve as fermentable carbohydrate sources in the terminal small intestine or large intestine of swine.

  • [Show abstract] [Hide abstract]
    ABSTRACT: The CODEX Alimentarius definition of dietary fiber includes all nondigestible carbohydrate polymers with a degree of polymerization of 3 or more as dietary fiber with the proviso that they show health benefits. The global definition, if accepted by all authoritative bodies, offers a chance for international harmonization in research, food composition tables, and food labeling. Its nonacceptance highlights problems that may develop when definitions vary by region. The definition requires that the research community agrees upon physiological effects for which there is substantial scientific agreement, e.g., fibers' effects on laxation and gut health, on attenuating blood lipids and blood glucose and insulin, and in promoting fermentation in the large bowel. The definition also necessitates the delineation of research protocols to prove the benefits of various isolated and synthesized fibers. These should emanate from evidence-based reviews that fairly weigh epidemiological data while considering that added fibers are not reflected in many food composition databases. They then should include well-controlled, randomized, control trials and utilize animal studies to determine mechanisms. Agreement on many study variables such as the type of subject and the type of baseline diet that best fits the question under investigation will also be needed. Finally, the definition establishes that all types of fiber can address the severe fiber consumption gap that exists throughout the world by recognizing that the combination of fiber-rich and -fortified foods increases fiber intake while allowing consumers to stay within allowed energy levels.
    Advances in Nutrition 01/2013; 4(1):8-15. · 3.20 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The mammalian gastrointestinal tract, the site of digestion and nutrient absorption, harbors trillions of beneficial commensal microbes from all three domains of life. Commensal bacteria, in particular, are key participants in the digestion of food, and are responsible for the extraction and synthesis of nutrients and other metabolites that are essential for the maintenance of mammalian health. Many of these nutrients and metabolites derived from commensal bacteria have been implicated in the development, homeostasis and function of the immune system, suggesting that commensal bacteria may influence host immunity via nutrient- and metabolite-dependent mechanisms. Here we review the current knowledge of how commensal bacteria regulate the production and bioavailability of immunomodulatory, diet-dependent nutrients and metabolites and discuss how these commensal bacteria-derived products may regulate the development and function of the mammalian immune system.
    Nature Immunology 06/2013; 14(7):676-84. · 26.20 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Human milk (HM) is rich in oligosaccharides (HMO) that exert prebiotic and anti-infective activities. HM feeding reduces the incidence of rotavirus (RV) infection in infants. Herein, the anti-RV activity of oligosaccharides was tested in an established in vitro system for assessing cellular binding and viral infectivity/replication, and also tested in a newly developed, acute RV infection, in situ piglet model. For the in vitro work, crude HMO isolated from pooled HM, neutral HMO (lacto-N-neotetraose, LNnT; 2'-fucosyllactose) and acidic HMO (aHMO, 3'-sialyllactose, 3'-SL; 6'-sialyllactose, 6'-SL) were tested against the porcine OSU strain and human RV Wa strain. The RV Wa strain was not inhibited by any oligosaccharides. However, the RV OSU strain infectivity was dose-dependently inhibited by sialic acid (SA)-containing HMO. 3'-SL and 6'-SL concordantly inhibited 125I-radiolabelled RV cellular binding and infectivity/replication. For the in situ study, a midline laparotomy was performed on 21-d-old formula-fed piglets and six 10 cm loops of ileum were isolated in situ. Briefly, 2 mg/ml of LNnT, aHMO mixture (40 % 6'-SL/10 % 3'-SL/50 % SA) or media with or without the RV OSU strain (1 × 107 focus-forming units) were injected into the loops and maintained for 6 h. The loops treated with HMO treatments+RV had lower RV replication, as assessed by non-structural protein-4 (NSP4) mRNA expression, than RV-treated loops alone. In conclusion, SA-containing HMO inhibited RV infectivity in vitro; however, both neutral HMO and SA with aHMO decreased NSP4 replication during acute RV infection in situ.
    The British journal of nutrition 02/2013; · 3.45 Impact Factor


Available from
May 29, 2014