Preparation and modification of N-(2-hydroxyl) propyl-3-trimethyl ammonium chitosan chloride nanoparticle as a protein carrier.

Department of Environmental Science, Wuhan University, Wuhan, Hubei 430072, China.
Biomaterials (Impact Factor: 8.31). 01/2004; 24(27):5015-22. DOI: 10.1016/S0142-9612(03)00408-3
Source: PubMed

ABSTRACT N-(2-hydroxyl) propyl-3-trimethyl ammonium chitosan chloride (HTCC) is water-soluble derivative of chitosan (CS), synthesized by the reaction between glycidyl-trimethyl-ammonium chloride and CS. HTCC nanoparticles have been formed based on ionic gelation process of HTCC and sodium tripolyphosphate (TPP). Bovine serum albumin (BSA), as a model protein drug, was incorporated into the HTCC nanoparticles. HTCC nanoparticles were 110-180 nm in size, and their encapsulation efficiency was up to 90%. In vitro release studies showed a burst effect and a slow and continuous release followed. Encapsulation efficiency was obviously increased with increase of initial BSA concentration. Increasing TPP concentration from 0.5 to 0.7 mg/ml promoted encapsulation efficiency from 46.7% to 90%, and delayed release. As for modified HTCC nanoparticles, adding polyethylene glycol (PEG) or sodium alginate obviously decreased the burst effect of BSA from 42% to 18%. Encapsulation efficiency was significantly reduced from 47.6% to 2% with increase of PEG from 1.0 to 20.0 mg/ml. Encapsulation efficiency was increased from 14.5% to 25.4% with increase of alginate from 0.3 to 1.0 mg/ml.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In this study, chitosan (CS) grafted by glycidyltrimethylammonium chloride (GTMAC) to form GTMAC-CS was synthesized, chemically identified, and rheologically characterized. The Maxwell Model can be applied to closely simulate the dynamic rheological performance of the chitosan and the GTMAC-CS solutions, revealing a single relaxation time pertains to both systems. The crossover point of G' and G" shifted toward lower frequencies as the CS concentration increased but remained almost constant frequencies as the GTMAC-CS concentration increased, indicating the solubility of GTMAC-CS in water is good enough to diminish influence from the interaction among polymer chains so as to ensure the relaxation time is independent of the concentration. A frequency-concentration superposition master curve of the CS and GTMAC-CS solutions was subsequently proposed and well fitted with the experimental results. Finally, the sol-gel transition of CS is 8.5 weight % (wt %), while that of GTMAC-CS is 20 wt %, reconfirming the excellent water solubility of the latter.
    Marine Drugs 01/2014; 12(11):5547-62. · 3.98 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Introduction: Oral delivery of therapeutics, particularly protein-based pharmaceutics, is of great interest for safe and controlled drug delivery for patients. Hydrogels offer excellent potential as oral therapeutic systems due to inherent biocompatibility, diversity of both natural and synthetic material options and tunable properties. In particular, stimuli-responsive hydrogels exploit physiological changes along the intestinal tract to achieve site-specific, controlled release of protein, peptide and chemotherapeutic molecules for both local and systemic treatment applications. Areas covered: This review provides a wide perspective on the therapeutic use of hydrogels in oral delivery systems. General features and advantages of hydrogels are addressed, with more considerable focus on stimuli-responsive systems that respond to pH or enzymatic changes in the gastrointestinal environment to achieve controlled drug release. Specific examples of therapeutics are given. Last, in vitro and in vivo methods to evaluate hydrogel performance are discussed. Expert opinion: Hydrogels are excellent candidates for oral drug delivery, due to the number of adaptable parameters that enable controlled delivery of diverse therapeutic molecules. However, further work is required to more accurately simulate physiological conditions and enhance performance, which is important to achieve improved bioavailability and increase commercial interest.
    Expert Opinion on Drug Delivery 06/2014; 11(6):901-15. · 4.87 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Abstract: A series of water-soluble cationic chitosan derivatives were prepared by chemoselective functionalization at the amino group of five different parent chitosans having varying degrees of acetylation and molecular weight. The quaternary moieties were introduced at different alkyl spacer lengths from the polymer backbone (C-0, C-2 and C-6) with the aid of 3,6-di-O-tert-butyldimethylsilyl protection of the chitosan backbone, thus allowing full (100%) substitution of the free amino groups. All of the derivatives were characterized using 1H-NMR, 1H-1H COSY and FT-IR spectroscopy, while molecular weight was determined by GPC. Antibacterial activity was investigated against Gram positive S. aureus and Gram negative E. coli. The relationship between structure and activity/toxicity was defined, considering the effect of the cationic group’s structure and its distance from the polymer backbone, as well as the degree of acetylation within a molecular weight range of 7–23 kDa for the final compounds. The N,N,N-trimethyl chitosan with 100% quaternization showed the highest antibacterial activity with moderate cytotoxicity, while increasing the spacer length reduced the activity. Trimethylammoniumyl quaternary ammonium moieties contributed more to activity than 1-pyridiniumyl moieties. In general, no trend in the antibacterial activity of the compounds with increasing molecular weight or degree of acetylation up to 34% was observed. Keywords: silyl chitosan; trimethyl chitosan (TMC); quaternary ammoniumyl; pyridiniumyl derivatives; antibacterial activity; structure-activity relationship (SAR)
    Marine Drugs 08/2014; 12(8):4635-4658. · 3.98 Impact Factor