Article

Small-volume frequency-domain oximetry: phantom experiments and first in vivo results.

Heinrich-Heine University, Department of Laser Medicine, D-40225 Düsseldorf, Germany.
Journal of Biomedical Optics (Impact Factor: 2.88). 10/2003; 8(4):618-28. DOI: 10.1117/1.1608892
Source: PubMed

ABSTRACT We describe a new method to determine the oxygen saturation and the total hemoglobin content of tissue in vivo absolutely at small source-detector separations (<10 mm). Phase and mean intensity of modulated laser light of various wavelengths was measured at several predetermined source-detector separations in the frequency domain. From these measured quantities, the absorption coefficient was derived using the modified time-integrated microscopic Beer-Lambert law (MBL). In addition, the interaction volume of the photons was determined using a multi-layer Monte-Carlo model of human skin. To evaluate the method, we employed homogenous solid phantoms (consisting of TiO2 particles embedded in resin) with mean scattering and absorbing properties comparable to those of human skin. Furthermore, in vivo measurements were performed in a healthy volunteer to demonstrate that the technique is applicable for the determination of the oxygen saturation and the total hemoglobin content in the skin in vivo. The proposed technique is especially suited for the on-line determination of the oxygen saturation and total hemoglobin content in applications where small applicators are required (e.g., fetal oxygen monitoring sub partu).

0 Bookmarks
 · 
68 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: During heating, the optical properties of biological tissues change with the coagulation state. In this study, we propose a technique, which uses these changes to monitor the coagulation process during laser-induced interstitial thermotherapy (LITT). Untreated and coagulated (water bath, temperatures between 35 degrees C and 90 degrees C for 20 minutes.) samples of bovine liver tissue were examined using a Nd:YAG (lambda = 1064 nm) frequency-domain reflectance spectrometer. We determined the time integrated intensities (I(DC)) and the phase shifts (Phi) of the photon density waves after migration through the tissue. From these measured quantities, the time of flight (TOF) of the photons and the absorption coefficients of the samples were derived using the modified microscopic Beer-Lambert law. The absorption coefficients of the liver samples decreased significantly with the temperature in the range between 50 degrees C and 70 degrees C. At the same time, the TOF of the investigated photos was found increased indicating an increased scattering. The coagulation dynamics could be well described using the Arrhenius formalism with the activation energy of 106 kJ/mol and the frequency factor of 1.59 x 10(13)/second. Frequency-domain reflectance spectroscopy in combination with the modified microscopic Beer-Lambert (MBL) is suitable to measure heat induced changes in the absorption and scattering properties of bovine liver in vitro. The technique may be used to monitor the coagulation dynamics during local thermo-coagulation in vivo.
    Lasers in Surgery and Medicine 07/2005; 36(5):365-70. · 2.46 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: L'objectif de ce travail de recherche est d'évaluer la capacité des spectroscopies optiques d'autofluorescence et de réflectance diffuse à caractériser les différents stades de la transformation néoplasique de la peau et ainsi d'aider au diagnostic des deux lésions de peau les plus létales : le mélanome malin et le carcinome épidermoïde. Dans l'étude portant sur le mélanome, un objet-test (« fantôme ») a été développé pour modéliser différentes épaisseurs de mélanome (indice de Breslow). La spectroscopie de réflectance diffuse résolue spatialement (grâce à l'utilisation de cinq fibres optiques réceptrices situées à cinq distances différentes de la fibre optique excitatrice) a montré sa capacité à discriminer (p<0,05) des indices de Breslow simulés grâce à des fantômes d'épaisseur variant par pas d'1 mm. D'autre part, des mesures de spectroscopie bimodale (combinant autofluorescence en multi-excitation et réflectance diffuse) ont été réalisées sur peau murine tout au long des sept mois de photocarcinogenèse. Des prélèvements cutanés ont permis d'établir trois classes histologiques (en plus de la classe saine du groupe contrôle) : hyperplasie compensatoire, hyperplasie atypique et dysplasie. Puis la précision diagnostique a été évaluée par analyse statistique multivariée. Nos principaux résultats montrent que la bimodalité associant autofluorescence (excitation à 410 nm) et réflectance diffuse permet une amélioration de la spécificité de 9 points de pourcentage comparées aux performances de chacune des modalités utilisée seule lors de la discrimination des trois types d'hyperplasie. Des études cliniques doivent maintenant confirmer l'intérêt de ces résultats.
    01/2008;