Thiol/disulfide exchange is a prerequisite for CXCR4-tropic HIV-1 envelope-mediated T-cell fusion during viral entry.

Center for Drug Evaluation and Research, Food and Drug Adminiatration, Bethesda, MD, USA.
Blood (Impact Factor: 9.78). 04/2004; 103(5):1586-94. DOI: 10.1182/blood-2003-05-1390
Source: PubMed

ABSTRACT Attachment of gp120 to CD4 during HIV-1 entry triggers structural rearrangement in gp120 that enables binding to an appropriate coreceptor. Following coreceptor engagement, additional conformational changes occur in the envelope (Env), resulting in fusion of virion and cell membranes. Catalysts with redox-isomerase activity, such as protein disulfide isomerase (PDI), facilitate Env conversion from its inactive to its fusion-competent conformation. We report here that anti-PDI agents effectively block CXCR4 Env-mediated fusion and spread of virus infection. Exogenously added PDI, in turn, can rescue fusion from this blockade. We further find that PDI facilitates thiol/disulfide rearrangement in gp120 during conformational change, whereas inhibition of this redox shuffling prevents gp41 from assuming the fusogenic 6-helix bundle conformation. At the virus-cell contact site, gp120 induces assembly of PDI, CD4, and CXCR4 into a tetramolecular protein complex serving as a portal for viral entry. Our findings support the hypothesis that Env conformational change depends on a well-coordinated action of a tripartite system in which PDI works in concert with the receptor and the coreceptor to effectively lower the activation energy barrier required for Env conformational rearrangement.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The family of natriuretic peptides (NPs), including atrial natriuretic peptide (ANP), B-type natriuretic peptide (BNP), and C-type natriuretic peptide (CNP), exert important and diverse actions for cardiovascular and renal homeostasis. The autocrine and paracrine functions of the NPs are primarily mediated through the cellular membrane bound guanylyl cyclase-linked receptors GC-A (NPR-A) and GC-B (NPR-B). As the ligands and receptors each contain disulfide bonds, a regulatory role for the cell surface protein disulfide isomerase (PDI) was investigated. We utilized complementary in vitro and in vivo models to determine the potential role of PDI in regulating the ability of the NPs to generate its second messenger, cyclic guanosine monophosphate. Inhibition of PDI attenuated the ability of ANP, BNP and CNP to generate cGMP in human mesangial cells (HMCs), human umbilical vein endothelial cells (HUVECs), and human aortic smooth muscle cells (HASMCs), each of which were shown to express PDI. In LLC-PK1 cells, where PDI expression was undetectable by immunoblotting, PDI inhibition had a minimal effect on cGMP generation. Addition of PDI to cultured LLC-PK1 cells increased intracellular cGMP generation mediated by ANP. Inhibition of PDI in vivo attenuated NP-mediated generation of cGMP by ANP. Surface Plasmon Resonance demonstrated modest and differential binding of the natriuretic peptides with immobilized PDI in a cell free system. However, PDI was shown to co-localize on the surface of cells with GC-A and GC-B by co-immunoprecpitation and immunohistochemistry. These data demonstrate for the first time that cell surface PDI expression and function regulate the capacity of natriuretic peptides to generate cGMP through interaction with their receptors.
    PLoS ONE 11/2014; 9(11):e112986. · 3.53 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Significance- Understanding isoform- and context-specific subcellular Nox NADPH oxidase compartmentalization allows relevant functional inferences. This review addresses the interplay between Nox NADPH oxidases and the endoplasmic reticulum (ER), an increasingly evident player in redox pathophysiology given its role in redox protein folding and stress responses. Recent advances-Catalytic/regulatory transmembrane subunits are synthesized in the ER and their processing includes folding, N-glycosylation, heme insertion, p22phox heterodimerization, as shown for phagocyte Nox2. Duox maturation also involves regulation by ER-resident Duoxa2. The ER is the activation site for some isoforms, typically Nox4, but potentially other isoforms. Such location influences redox/Nox-mediated calcium signaling regulation via ER targets such as SERCA. Growing evidence suggests Noxes are integral signaling elements of the unfolded protein response during ER stress, with Nox4 playing a dual prosurvival/proapoptotic role in this setting, while Nox2 enhances proapoptotic signaling. ER chaperones such as protein disulfide isomerase (PDI) closely interact with Noxes. PDI supports growth factor-dependent Nox1 activation and mRNA expression, as well as migration in smooth muscle cells, and PDI overexpression induces acute spontaneous Nox activation. Critical issues-Mechanisms of PDI effects include possible support of complex formation and RhoGTPase activation. In phagocytes, PDI supports phagocytosis, Nox activation and redox-dependently interacts with p47phox. Together, results implicate PDI as possible Nox organizer. Future directions- We propose that convergence between Noxes and ER may have evolutive roots given ER-related functional contexts which paved Nox evolution, namely calcium signaling and pathogen killing. Overall, the interplay between Noxes and the ER may provide relevant insights in Nox-related (patho)physiology.
    Antioxidants & Redox Signaling 01/2014; · 8.20 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Nairobi sheep disease virus (NSDV) of the genus Nairovirus causes a haemorrhagic gastroenteritis in sheep and goats with mortality up to 90%; the virus is found in East and Central Africa, and in India, where the virus is called Ganjam virus. NSDV is closely related to the human pathogen Crimean-Congo haemorrhagic fever virus, which also causes a haemorrhagic disease. As with other nairoviruses, replication of NSDV takes place in the cytoplasm and the new virus particles bud into the Golgi apparatus; however, the effect of viral replication on cellular compartments has not been studied extensively. We have found that the overall structure of the endoplasmic reticulum (ER), the ER-Golgi intermediate compartment and the Golgi were unaffected by infection with NSDV. However, we observed that NSDV infection led to the loss of protein disulphide isomerase (PDI), an oxidoreductase present in the lumen of the endoplasmic reticulum (ER) and which assists during protein folding, from the ER. Further investigation showed that NSDV-infected cells have high levels of PDI at their surface, and PDI is also secreted into the culture medium of infected cells. Another chaperone from the PDI family, ERp57, was found to be similarly affected. Analysis of infected cells and expression of individual viral glycoproteins indicated that the NSDV PreGn glycoprotein is involved in redistribution of these soluble ER oxidoreductases. It has been suggested that extracellular PDI can activate integrins and tissue factor, which are involved respectively in pro-inflammatory responses and disseminated intravascular coagulation, both of which manifest in many viral haemorrhagic fevers. The discovery of enhanced PDI secretion from NSDV-infected cells may be an important finding for understanding the mechanisms underlying the pathogenicity of haemorrhagic nairoviruses.
    PLoS ONE 04/2014; 9(4):e94656. · 3.53 Impact Factor

Full-text (2 Sources)

Available from
Feb 3, 2015