Article

Genetic factors in cardiovascular disease. 10 questions.

Department of Medicine, University of California, Los Angeles, CA 90095-1679, USA.
Trends in Cardiovascular Medicine (Impact Factor: 2.07). 12/2003; 13(8):309-16. DOI: 10.1016/j.tcm.2003.08.001
Source: PubMed

ABSTRACT The common forms of cardiovascular disease (CVD) have a complex etiology, involving multiple genetic influences and important environmental interactions. Because of this complexity, it has proved difficult to apply the positional cloning approaches that have revolutionized understanding of Mendelian (single-gene) disorders; and the understanding of the genetics of CVD and its underlying cause, atherosclerosis, remains poor. This review, organized into 10 broad questions, summarizes the understanding of the genetics of common, complex forms of CVD. Implications for DNA-based diagnosis, pharmacogenetics, and risk assessment are also discussed.

0 Followers
 · 
62 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: RESUMEN Las enfermedades comunes, como la diabetes o las enfermedades cardio-vasculares, tienen un importante componente genético. El conocimiento de las variantes génicas que las causan es esencial para el diseño de futuras herra-mientas diagnósticas. Mientras que las mutaciones localizadas en las regiones codificantes tienen una elevada penetrancia y no pueden explicar la genética de las enfermedades comunes, las variantes en las regiones reguladoras tienen una serie de propie-dades que las hacen ideales para hacerlo. En primer lugar, presentan una pene-trancia baja. Además, poseen una mayor capacidad de interaccionar con los cam-bios ambientales. La existencia de un gran número de polimorfismos en las regiones regulado-ras hace necesario implementar estrategias lo más económicas posibles para su identificación y caracterización. La selección de genes candidatos, seguida de aná-lisis bioinformáticos, es una de ellas. Pero el análisis sería incompleto sin la rea-lización de ensayos funcionales cuyos métodos se describen en este capítulo. Los más habituales son el retardo en gel y los ensayos con genes reporteros, una de cuyas principales limitaciones es la imposibilidad de llevarlos a cabo en gran es-cala. Por esta razón se están diseñando nuevas aproximaciones con este objetivo. La combinación de todos ellos ya ha producido resultados interesantes. Es de es-perar que en los próximos años se produzca un desarrollo que permita la aplica-ción a gran escala y que permita desarrollar algoritmos que sirvan como pruebas para diagnosticar el riesgo de padecer las enfermedades más comunes.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: A complex disease trait refers to a phenotype that does not follow simple Mendelian segregation attributable to a single gene locus, but instead may be caused by multiple disease loci, their interactions, polygenic inheritance, and environmental effects. Most cardiovascular disorders are thought to have a polygenic basis with complex interactions with environmental factors. A gene that increases or decreases the risk to a complex cardiovascular disease (susceptibility gene) can now be mapped to a specific chromosomal region by model-free linkage analysis, and follow-up molecular genetic studies can identify the specific gene at the locus. This chapter describes a protocol for model-free linkage analysis of a complex trait, as implemented in the popular genetic analysis software—SAGE. In particular, the Haseman-Elston sib-pair regression method is introduced and implemented with examples to demonstrate how to identify susceptibility loci for complex traits.
    10/2007: pages 61-89;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Many biological traits and heritable diseases are multifactorial, involving combinations of genetic variants and environmental factors. To dissect the genetic basis for these traits and to characterize their functional consequences, mouse models are widely used, not only because of their genetic and physiological similarity to humans, but also because an extraordinary variety of genetic resources enable rigorous functional studies. Chromosome substitution strains (CSSs) are a powerful complement to existing resources for studying multigenic traits. By partitioning the genome into a panel of new inbred strains with single chromosome substitutions, one strain for each of the autosomes, the X and Y chromosome, and the mitochondria, unique experimental designs and considerable statistical power are possible. Multigenic trait genes (or quantitative trait loci [QTLs]) with weak effects are easily detected, linkage and congenic crosses can be quickly made, gene interactions are readily characterized, and discovery of QTLs is greatly accelerated. Several published studies demonstrate the considerable utility of these strains and new applications for CSSs continue to be discovered.
    Methods in molecular medicine 02/2006; 128:153-72. DOI:10.1385/1-59745-159-2:153