Article

Effects of beta-adrenoceptor blockade on the phenotypic characteristics of thymocytes and peripheral blood lymphocytes.

Immunology Research Center Branislav Janković, Institute of Immunology and Virology Torlak, Belgrade, Serbia and Montenegro.
International Journal of Neuroscience (Impact Factor: 1.22). 01/2004; 113(12):1653-73. DOI: 10.1080/00207450390245216
Source: PubMed

ABSTRACT The study revealed that beta-adrenoceptor blockade with propranolol (0.40 mg/100 g/day, s.c.) in adult male DA rats: (i) increased the thymocyte proliferation and apoptosis, (ii) caused disturbances in kinetics of T cell differentiation leading to distinguishable changes in relative proportion of thymocytes at distinct maturational steps and to an expansion of the most mature single positive (CD4+, CD8+) thymocyte pool, (iii) affected the relative proportion of neither CD4+ nor CD8+ peripheral blood lymphocytes (PBL), and (iv) augmented the relative number of CD8+CD25+ cells. Thus, the results suggest the role of beta-adrenoceptors in fine-tuning of T cell maturation, and, possibly, distribution and activation of distinct PBL subsets.

0 Bookmarks
 · 
62 Views
  • Source
  • [Show abstract] [Hide abstract]
    ABSTRACT: The existence of a network of immunoneuroendocrine interactions that results in the reciprocal modulation of the classical functions of each system is well established at present. Most of the evidence derives from studies on secondary lymphoid organs, such as the spleen and lymph nodes. In this article, several aspects relevant to understand the role of the sympathetic nervous system in the establishment of these interactions in the thymus are discussed. At present, the sympathetic innervation of the thymus, the expression of adrenergic receptors in thymic cells, particularly of β-adrenergic receptors, and the effect of sympathetic neurotransmitters, although mainly derived from in vitro or pharmacological studies, seem to be relatively well studied. However, other aspects, such as the relevance that immune-sympathetic interactions at the thymic level may have for certain diseases, specially autoimmune or other diseases that primarily involve the activation of the immune system, as well as how the integration of sympathetic and hormonal signals at local levels may affect thymic functions, certainly deserve further investigation.
    NeuroImmunoModulation 01/2011; 18(5):339-49. · 1.84 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Host defense against pathogens is regulated by cross-talk between two major adaptive systems of the body—the nervous and immune systems. This bidirectional communication is essential for maintaining homeostasis. Sympathetic nerves that innervate lymphoid tissues provide one of the major outflows from the brain to regulate tissue repair and host defense. This review focuses on the role of (sympathetic nervous system) SNS in neuroimmune regulation, an area that has received much less attention than the other major immunoregulatory pathway, the hypothalamo–pituitary–adrenal (HPA) axis. Research over the past 25 years has demonstrated that norepinephrine (NE) fulfills the criteria for neurotransmission in lymphoid tissue, with both primary and secondary immune organs receiving an extensive supply of sympathetic nerves that directly contact with immunocytes. Under stimulation, NE released from terminals in secondary lymphoid organs interacts with adrenergic receptors (AR) expressed on immune cells to affect the development, trafficking, circulation, proliferation, cytokine production, and the functional activity of variety of lymphoid and myeloid cells. Our knowledge of the role of sympathetic nerves in modulating hematopoietic functions of primary lymphoid organs (bone marrow and thymus) and mucosal immunity are extremely limited. While the immune system is not absolutely dependent upon signals from the brain to function, sympathetic-immune modulation may drive host defense toward protection against, or progression toward, immune-related diseases. Additionally, signals from the (SNS) may enhance immune readiness during disease- or injury-induced ‘fight-or-flight’ responses. A better understanding of neural–immune interactions may foster the development of strategies for treating immune-mediated diseases, particularly where neuroimmune cross-talk may be dysregulated.
    Clinical Neuroscience Research 08/2006; · 0.80 Impact Factor