P16INK4a is required for hSNF5 chromatin remodeler-induced cellular senescence in malignant rhabdoid tumor cells.

Gene Regulation Laboratory and Center for Biomedical Genetics, Leiden University Medical Center, The Netherlands.
Journal of Biological Chemistry (Impact Factor: 4.65). 02/2004; 279(5):3807-16. DOI: 10.1074/jbc.M309333200
Source: PubMed

ABSTRACT The hSNF5 chromatin-remodeling factor is a tumor suppressor that is inactivated in malignant rhabdoid tumors (MRTs). A number of studies have shown that hSNF5 re-expression blocks MRT cell proliferation. However, the pathway through which hSNF5 acts remains unknown. To address this question, we generated MRT-derived cell lines in which restoration of hSNF5 expression leads to an accumulation in G(0)/G(1), induces cellular senescence and increased apoptosis. Following hSNF5 expression, we observed transcriptional activation of the tumor suppressor p16(INK4a) but not of p14(ARF), repression of several cyclins and CD44, a cell surface glycoprotein implicated in metastasis. Chromatin immunoprecipitations indicated that hSNF5 activates p16(INK4a) transcription and CD44 down-regulation by mediating recruitment of the SWI/SNF complex. Thus, hSNF5 acts as a dualistic co-regulator that, depending on the promoter context, can either mediate activation or repression. Three lines of evidence established that p16(INK4a) is an essential effector of hSNF5-induced cell cycle arrest. 1) Overexpression of p16(INK4a) mimics the effect of hSNF5 induction and leads to cellular senescence. 2) Expression of a p16(INK4a)-insensitive form of CDK4 obstructs hSNF5-induced cell cycle arrest. 3) Inhibition of p16(INK4a) activation by siRNA blocks hSNF5-mediated cellular senescence. Collectively, these results indicate that in human MRT cells, the p16(INK4a)/pRb, rather than the p14(ARF)/p53 pathway, mediates hSNF5-induced cellular senescence.

  • [Show abstract] [Hide abstract]
    ABSTRACT: The SWI/SNF chromatin remodeling complex is a master regulator of developmental cell-fate decisions, although the key target pathways are poorly characterized. Here, we interrogated the contribution of the SWI/SNF subunit and tumor suppressor SNF5 to the regulation of developmental pathways using conditional mouse and cell culture models. We find that loss of SNF5 phenocopies β-catenin hyperactivation and that SNF5 is essential for regulating Wnt/β-catenin pathway target expression. These data provide insight into chromatin-based mechanisms that underlie developmental regulation and elucidate the emerging theme that mutation of this tumor suppressor complex can activate developmental pathways by uncoupling them from upstream control.Oncogene advance online publication, 25 February 2013; doi:10.1038/onc.2013.37.
    Oncogene 02/2013; · 8.56 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Cellular senescence is an irreversible proliferation arrest, thought to contribute to tumor suppression, proper wound healing and, perhaps, tissue and organismal aging. Two classical tumor suppressors, p53 and pRB, control cell cycle arrest associated with senescence. Profound molecular changes occur in cells undergoing senescence. At the level of chromatin, for example, senescence associated heterochromatic foci (SAHF) form in some cell types. Chromatin is inherently dynamic and likely needs to be actively maintained to achieve a stable cell phenotype. In proliferating cells chromatin is maintained in conjunction with DNA replication, but how non-proliferating cells maintain chromatin structure is poorly understood. Some histone variants, such as H3.3 and macroH2A increase as cells undergo senescence, suggesting histone variants and their associated chaperones could be important in chromatin structure maintenance in senescent cells. Here, we discuss options available for senescent cells to maintain chromatin structure and the relative contribution of histone variants and chaperones in this process. This article is part of a Special Issue entitled: Histone chaperones and chromatin assembly.
    Biochimica et Biophysica Acta 08/2011; 1819(3-4):322-31. · 4.66 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The p53 tumor suppressor protein is frequently mutated in human tumors. It is thought that the p53 pathway is indirectly impaired in the remaining tumors, for example by overexpression of its important regulators Mdm2 and Mdm4, making them attractive targets for the development of anti-cancer agents. Recent studies have suggested that Mdm4 levels determine the sensitivity of tumor cells for anti-cancer therapy. To investigate this possibility, we studied the drug sensitivity of several breast cancer cell lines containing wild-type p53, but expressing different Mdm4 levels. We show that endogenous Mdm4 levels can affect the sensitivity of breast cancer cells to anti-cancer agents, but in a cell line-dependent manner and depending on an intact apoptotic response. Furthermore, treatment with the non-genotoxic agent Nutlin-3 sensitizes cells for doxorubicin, showing that activation of p53 by targeting its regulators is an efficient strategy to decrease cell viability of breast cancer cells. These results confirm a function of Mdm4 in determining the efficacy of chemotherapeutic agents to induce apoptosis of cancer cells in a p53-dependent manner, although additional undetermined factors also influence the drug response. Targeting Mdm4 to sensitize tumor cells for chemotherapeutic drugs might be a strategy to effectively treat tumors harboring wild-type p53.
    Oncogene 02/2010; 29(16):2415-26. · 8.56 Impact Factor