Article

The classical Ubisch bodies carry a sporophytically produced structural protein (RAFTIN) that is essential for pollen development.

Plant Biotechnology Institute, National Research Council of Canada, 110 Gymnasium Place, Saskatoon, Saskatchewan, Canada S7N 0W9.
Proceedings of the National Academy of Sciences (Impact Factor: 9.81). 12/2003; 100(24):14487-92. DOI: 10.1073/pnas.2231254100
Source: PubMed

ABSTRACT Pollen fecundity is crucial to crop productivity and also to biodiversity in general. Pollen development is supported by the tapetum, a metabolically active sporophytic nurse layer that devotes itself to this process. The tapetum in cereals and a vast majority of other plants is of the nonamoeboid type. Unable to reach out to microspores, it secretes nutrients into the anther locule where the microspores reside and develop. Orbicules (Ubisch bodies), studied in various plants since their discovery approximately 140 years ago, are a hallmark of the secretory tapetum. Their significance to tapetal or pollen development has not been established. We have identified in wheat and rice an anther-specific single-copy gene (per haploid genome equivalent) whose suppression in rice by RNA interference nearly eliminated the seed set. The flowers in the transgenics were normal for female functions, but the pollen collapsed and became less viable. Further characterization of the gene product, named RAFTIN, in wheat has shown that it is present in pro-orbicule bodies and it is accumulated in Ubisch bodies. Furthermore, it is targeted to microspore exine. Although the carboxyl portion of RAFTINs shares short, dispersed amino acid sequences (BURP domain) in common with a variety of proteins of disparate biological contexts, the occurrence RAFTIN per se is limited to cereals; neither the Arabidopsis genome nor the vast collection of ESTs suggests any obvious dicot homologs. Furthermore, our results show that RAFTIN is essential for the late phase of pollen development in cereals.

0 Followers
 · 
97 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Pollen grains are encased by a multilayered, multifunctional wall. The sporopollenin and pollen coat constituents of the outer pollen wall (exine) are contributed by surrounding sporophytic tapetal cells. Because the biosynthesis and development of the exine occurs in the innermost cell layers of the anther, direct observations of this process are difficult. The objective of this study was to investigate the transport and assembly of exine components from tapetal cells to microspores in the intact anthers of Arabidopsis thaliana. Intrinsically fluorescent components of developing tapetum and microspores were imaged in intact, live anthers using two-photon microscopy. Mutants of ABCG26, which encodes an ATP binding cassette transporter required for exine formation, accumulated large fluorescent vacuoles in tapetal cells, with corresponding loss of fluorescence on microspores. These vacuolar inclusions were not observed in tapetal cells of double mutants of abcg26 and genes encoding the proposed sporopollenin polyketide biosynthetic metabolon (ACYL COENZYME A SYNTHETASE5, POLYKETIDE SYNTHASE A [PKSA], PKSB, and TETRAKETIDE a-PYRONE REDUCTASE1), providing a genetic link between transport by ABCG26 and polyketide biosynthesis. Genetic analysis also showed that hydroxycinnamoyl spermidines, known components of the pollen coat, were exported from tapeta prior to programmed cell death in the absence of polyketides, raising the possibility that they are incorporated into the exine prior to pollen coat deposition. We propose a model where ABCG26-exported polyketides traffic from tapetal cells to form the sporopollenin backbone, in coordination with the trafficking of additional constituents, prior to tapetum programmed cell death.
    The Plant Cell 11/2014; 26(11). DOI:10.1105/tpc.114.130484 · 9.58 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Male sterile line is a useful material for hybridization, but its sterility mechanism, especially proteomic profile, is still not entirely clear. In wheat (Triticum aestivum L.), a male sterile Bainong (BNS) genotype whose sterility could be manipulated by temperature was recently selected. We focused on the proteomic profile change of anthers from the male sterile line (SL) and its conversional line (CL). Two-dimensional gel electrophoresis and MALDI-TOF-MS technologies were utilized for proteomic profiles analysis. Differently abundant protein spots (over 2-fold, P
    Biologia Plantarum 06/2015; 59(2). DOI:10.1007/s10535-015-0486-1 · 1.74 Impact Factor
  • Source
    Gayana - Botanica 12/2014; 71(2):199-215. DOI:10.4067/S0717-66432014000200003 · 0.26 Impact Factor

Full-text (2 Sources)

Download
38 Downloads
Available from
Jun 1, 2014