Article

High sequence coverage of proteins isolated from liquid separations of breast cancer cells using capillary electrophoresis-time-of-flight MS and MALDI-TOF MS mapping.

Department of Chemistry, The University of Michigan, Ann Arbor, Michigan 48109-1055, USA.
Analytical Chemistry (Impact Factor: 5.7). 12/2003; 75(22):6209-17. DOI: 10.1021/ac0346454
Source: PubMed

ABSTRACT A method has been developed for high sequence coverage analysis of proteins isolated from breast cancer cell lines. Intact proteins are isolated using multidimensional liquid-phase separations that permit the collection of individual protein fractions. Protein digests are then analyzed by both matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) peptide mass fingerprinting and by capillary electrophoresis-electrospray ionization (CE-ESI)-TOF MS peptide mapping. These methods can be readily interfaced to the relatively clean proteins resulting from liquid-phase fractionation of cell lysates with little sample preparation. Using combined sequence information provided by both mapping methods, 100% sequence coverage is often obtained for smaller proteins, while for larger proteins up to 75 kDa, over 90% coverage can be obtained. Furthermore, an accurate intact protein MW value (within 150 ppm) can be obtained from ESI-TOF MS. The intact MW together with high coverage sequence information provides accurate identification. More notably the high sequence coverage of CE-ESI-TOF MS together with the MS/MS information provided by the ion trap/reTOF MS elucidates posttranslational modifications, sequence changes, truncations, and isoforms that may otherwise go undetected when standard MALDI-MS peptide fingerprinting is used. This capability is critical in the analysis of human cancer cells where large numbers of expressed proteins are modified, and these modifications may play an important role in the cancer process.

0 Bookmarks
 · 
50 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: In-gel digestion of gel-separated proteins is a major route to assist in proteomics-based biological discovery, which, however, is often embarrassed by its inherent limitations such as the low digestion efficiency and the low recovery of proteolytic peptides. For overcoming these limitations, many efforts have been directed at developing alternative methods to avoid the in-digestion. Here, we present a new method for efficient protein digestion and tryptic peptide recovery, which involved electroblotting gel-separated proteins onto a PVDF membrane, excising the PVDF bands containing protein of interest, and dissolving the bands with pure DMF (> or =99.8%). Before tryptic digestion, NH(4)HCO(3) buffer was added to moderately adjust the DMF concentration (to 40%) in order for trypsin to exert its activity. Experimental results using protein standards showed that, due to actions of DMF in dissolving PVDF membrane and the membrane-bound substances, the proteins were virtually in-solution digested in DMF-containing buffer. This protocol allowed more efficient digestion and peptide recovery, thereby increasing the sequence coverage and the confidence of protein identification. The comparative study using rat hippocampal membrane-enriched sample showed that the method was superior to the reported on-membrane tryptic digestion for further protein identification, including low abundant and/or highly hydrophobic membrane proteins.
    Electrophoresis 09/2009; 30(20):3626-35. · 3.26 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: As a complementary approach to 2D-PAGE, multidimensional liquid chromatography (MDLC) separation methods have been widely applied in all kinds of biological sample investigations. MDLC coupled with mass spectrometry is playing an important role in proteome research owing to its high speed, high resolution and high sensitivity. Among MDLC strategies, ion-exchange chromatography together with reversed-phase LC is still a most widely used chromatography in proteome analysis; other chromatographic methods are also frequently used in protein prefractionations. Recent MDLC technologies and applications to a variety of proteome analyses have achieved great development. The diversity of combinations of different chromatography modes to set up MDLC systems was demonstrated and discussed. Novel developments of MDLC techniques such as ultra-pressure system, array-based separation and monolithic material are also included in this article.
    Expert Review of Proteomics 10/2010; 7(5):665-78. · 3.90 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: This review intends not only to discuss the current possibilities to gain 100% sequence coverage for proteins, but also to point out the critical limits to such an attempt. The aim of 100% sequence coverage, as the review title already implies, seems to be rather surreal if the complexity and dynamic range of a proteome is taken into consideration. Nevertheless, established bottom-up shotgun approaches are able to roughly identify a complete proteome as exemplary shown by yeast. However, this proceeding ignores more or less the fact that a protein is present as various protein species. The unambiguous identification of protein species requires 100% sequence coverage. Furthermore, the separation of the proteome must be performed on the protein species and not on the peptide level. Therefore, top-down is a good strategy for protein species analysis. Classical 2D-electrophoresis followed by an enzymatic or chemical cleavage, which is a combination of top-down and bottom-up, is another interesting approach. Moreover, the review summarizes further top-down and bottom-up combinations and to which extent middle-down improves the identification of protein species. The attention is also focused on cleavage strategies other than trypsin, as 100% sequence coverage in bottom-up experiments is only obtainable with a combination of cleavage reagents.
    Amino Acids 07/2011; 41(2):291-310. · 3.91 Impact Factor

Full-text

View
0 Downloads
Available from