Adaptive evolution of bindin in the genus Heliocidaris is correlated with the shift to direct development.

Smithsonian Tropical Research Institute, Box 2072, Balboa, Panama.
Evolution (Impact Factor: 4.86). 11/2003; 57(10):2293-302. DOI: 10.1554/02-671
Source: PubMed

ABSTRACT Sea urchins are widely used to study both fertilization and development. In this study we combine the two fields to examine the evolution of reproductive isolation in the genus Heliocidaris. Heliocidaris tuberculata develops indirectly via a feeding larva, whereas the only other species in the genus, H. erythrogramma, has evolved direct development through a nonfeeding larva. We estimated the time of divergence between H. erythrogramma and H. tuberculata from mitochondrial DNA divergence, quantified levels of gametic compatibility between the two species in cross-fertilization assays, and examined the mode of evolution of the sperm protein bindin by sequencing multiple alleles of the two species. Bindin is the major component of the sea urchin sperm acrosomal vesicle, and is involved in sperm-egg attachment and fusion. Based on our analyses, we conclude that: the two species of Heliocidaris diverged less than five million years ago, indicating that direct development can evolve rapidly in sea urchins; since their divergence, the two species have become gametically incompatible; Heliocidaris bindin has evolved under positive selection; and this positive selection is concentrated on the branch leading to H. erythrogramma. Three hypotheses can explain the observed pattern of selection on bindin: (1) it is a correlated response to the evolution of direct development in H. erythrogramma; (2) it is the result of an intraspecific process acting in H. erythrogramma but not in H. tuberculata; or (3) it is the product of reinforcement on the species that invests more energy into each egg to avoid hybridization.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Life-history variables including egg size affect the evolutionary response to sexual selection in broadcast-spawning sea urchins and other marine animals. Such responses include high or low rates of codon evolution at gamete recognition loci that encode sperm- and egg-surface peptides. Strong positive selection on such loci affects intraspecific mating success and interspecific reproductive divergence (and may play a role in speciation). Here, we analyze adaptive codon evolution in the sperm acrosomal protein bindin from a brooding sea urchin (Heliocidaris bajulus, with large eggs and nonfeeding or lecithotrophic larval development) and compare our results to previously published data for two closely related congeners. Purifying selection and low relative rates of bindin nonsynonymous substitution in H. bajulus were significantly different from selectively neutral bindin evolution in H. erythrogramma despite similar large egg size in those two species, but were similar to the background rate of nonsynonymous bindin substitution for other closely related sea urchins (including H. tuberculata, all with small egg size and feeding planktonic larval development). Bindin evolution is not driven by egg size variation among Heliocidaris species, but may be more consistent with an alternative mechanism based on the effects of high or low spatial density of conspecific mates.
    Evolution 06/2012; 66(6):1709-21. · 4.86 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The evolution of reproductive barriers is crucial to the process of speciation. In the Echinoidea, studies have focused on divergence in the gamete recognition protein, bindin, as the primary isolating mechanism among species. As such, the capacity of alternate mechanisms to be effective reproductive barriers and the phylogenetic context in which they arise is unclear. Here, we examine the evolutionary histories and factors limiting gene exchange between two subspecies of Heliocidaris erythrogramma that occur sympatrically in Western Australia. We found low, but significant differentiation between the subspecies in two mitochondrial genes. Further, coalescent analyses suggest that they diverged in isolation on the east and west coasts of Australia, with a subsequent range expansion of H. e. erythrogramma into Western Australia. Differentiation in bindin was minimal, indicating gamete incompatibility is an unlikely reproductive barrier. We did, however, detect strong asynchrony in spawning seasons; H. e. erythrogramma spawned over summer whereas H. e. armigera spawned in autumn. Taken together, we provide compelling evidence for a recent divergence of these subspecies and their reproductive isolation without gamete incompatibility. Western Australian H. erythrogramma may therefore present an intriguing case of incipient speciation, which depends on long-term persistence of the factors underlying this spawning asynchrony.
    Evolution 11/2012; 66(11):3545-57. · 4.86 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Ocean warming can alter natural selection on marine systems, and in many cases, the long-term persistence of affected populations will depend on genetic adaptation. In this study, we assess the potential for adaptation in the sea urchin Heliocidaris erythrogramma armigera, an Australian endemic, that is experiencing unprecedented increases in ocean temperatures. We used a factorial breeding design to assess the level of heritable variation in larval hatching success at two temperatures. Fertilized eggs from each full-sibling family were tested at 22 °C (current spawning temperature) and 25 °C (upper limit of predicted warming this century). Hatching success was significantly lower at higher temperatures, confirming that ocean warming is likely to exert selection on this life-history stage. Our analyses revealed significant additive genetic variance and genotype-by-environment interactions underlying hatching success. Consistent with prior work, we detected significant nonadditive (sire-by-dam) variance in hatching success, but additionally found that these interactions were modified by temperature. Although these findings suggest the potential for genetic adaptation, any evolutionary responses are likely to be influenced (and possibly constrained) by complex genotype-by-environment and sire-by-dam interactions and will additionally depend on patterns of genetic covariation with other fitness traits.
    Journal of Evolutionary Biology 08/2013; · 3.48 Impact Factor

Full-text (2 Sources)

Available from
May 31, 2014