Article

Production of soluble and functional engineered antibodies in Escherichia coli improved by FkpA.

Academia Sinica, Beijing, China.
BioTechniques (Impact Factor: 2.4). 12/2003; 35(5):1032-8, 1041-2.
Source: PubMed

ABSTRACT Overproduction of genetically engineered antibodies, such as single-chain antibodies (scAbs) in Escherichia coli often results in insoluble and inactive products known as inclusion bodies. We now report that fusion or co-expression of FkpA, the E. coli periplasmic peptidyl-prolyl-isomerase with chaperone activity, substantially improves soluble and functional expression of scAbs. Anti-human bladder carcinoma scAb (PG) and anti-human CD3 x anti-human ovarian carcinoma-bispecific scAb (BH1) were fused with FkpA on the pTMF-based plasmid and expressed in E. coli. More than half of the amount of each expressed fusion protein FkpA-PG or FkpA-BH1 was soluble. In addition, the fusion protein cellulose-binding domain from Cellulomonas fimi (CBD)-PG and anti-human CD3 x anti-human CD28 x anti-human ovarian carcinoma-trispecific scAb (TRI) fused to the pelB (a signal peptide from pectate lysase B of a Bacillus sp.) signal sequence were co-expressed with FkpA under the control of the T7 promoter. A substantial portion of the co-expressed CBD-PG or TRI was soluble. Furthermore, PG, BH1, and TRI were biologically active as judged by ELISA and in vitro cytotoxicity assay. These results suggest that overexpression of FkpA should be useful in expressing heterologous proteins in E. coli.

1 Bookmark
 · 
89 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Improper protein folding or aggregation can frequently be responsible for low expression and poor functional activity of antibody fragments secreted into the E. coli periplasm. Expression issues also can affect selection of antibody candidates from phage libraries, since antibody fragments displayed on phage also are secreted into the E. coli periplasm. To improve secretion of properly folded antibody fragments into the periplasm, we have developed a novel approach that involves co-expressing the antibody fragments with the peptidyl prolyl cis-trans isomerase, FkpA, lacking its signal sequence (cytFkpA) which consequently is expressed in the E. coli cytosol. Cytoplasmic expression of cytFkpA improved secretion of functional Fab fragments into the periplasm, exceeding even the benefits from co-expressing Fab fragments with native, FkpA localized in the periplasm. In addition, panning and subsequent screening of large Fab and scFv naïve phage libraries in the presence of cytFkpA significantly increased the number of unique clones selected, as well as their functional expression levels and diversity.
    Journal of immunological methods 04/2013; · 2.35 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The periplasmic chaperone Skp has long been implicated in the assembly of outer membrane proteins (OMPs) in Escherichia coli. It has been shown to interact with unfolded OMPs, and the simultaneous loss of Skp and the main periplasmic chaperone in E. coli, SurA, results in synthetic lethality. However, a Δskp mutant displays only minor OMP assembly defects, and no OMPs have been shown to require Skp for their assembly. Here, we report a role for Skp in the assembly of the essential OMP LptD. This role may be compensated for by other OMP assembly proteins; in the absence of both Skp and FkpA or Skp and BamB, LptD assembly is impaired. Overexpression of SurA does not restore LptD levels in a Δskp ΔfkpA double mutant, nor does the overexpression of Skp or FkpA restore LptD levels in the ΔsurA mutant, suggesting that Skp acts in concert with SurA to efficiently assemble LptD in E. coli. Other OMPs, including LamB, are less affected in the Δskp ΔfkpA or Δskp bamB::kan double mutants, suggesting that Skp is specifically necessary for the assembly of certain OMPs. Analysis of an OMP with a domain structure similar to that of LptD, FhuA, suggests that common structural features may determine which OMPs require Skp for their assembly.
    Journal of bacteriology 06/2013; · 3.94 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Previously, we isolated the M18 scFv, which is an affinity matured antibody against the anthrax toxin PA, and observed that its single chain antibody (scAb) form (M18 scAb) exhibited superior stability compared to the scFv. Here, we report high cell density cultivations for preparative scale production of M18 scAb in a 3.5 L fermenter. Briefly, a pH-stat feeding strategy was employed in fed-batch cultivation, and four different cell densities (OD600 of 40, 80, 120, and 150) were examined for the induction of scAb gene expression. Among the four cell densities investigated, lower cell densities (OD600 of 40) showed higher post-induction cell growth and production yields (665 mg/L of scAb). Even though lower solubility (51%) of scAb was achieved at lower cell density (OD600 of 40), monomeric scAb could be purified with high purity (> 95%) using simple purification procedures. The purified scAb from high cell density cultures showed biological activity equivalent to that of scAb purified from shake flask cultivation.
    Bioprocess and Biosystems Engineering 02/2011; 34(7):811-7. · 1.87 Impact Factor

Full-text

View
0 Downloads
Available from