Article

Muscle mechanoreflex induces the pressor response by resetting the arterial baroreflex neural arc.

Department of Cardiovascular Dynamics, National Cardiovascular Center Research Institute, Osaka 565-8565, Japan.
AJP Heart and Circulatory Physiology (Impact Factor: 3.63). 05/2004; 286(4):H1382-8. DOI: 10.1152/ajpheart.00801.2003
Source: PubMed

ABSTRACT The effects of the muscle mechanoreflex on the arterial baroreflex neural control have not previously been analyzed over the entire operating range of the arterial baroreflex. In anesthetized, vagotomized, and aortic-denervated rabbits (n = 8), we isolated carotid sinuses and changed intracarotid sinus pressure (CSP) from 40 to 160 mmHg in increments of 20 mmHg every minute while recording renal sympathetic nerve activity (SNA) and arterial pressure (AP). Muscle mechanoreflex was induced by passive muscle stretch (5 kg of tension) of the hindlimb. Muscle stretch shifted the CSP-SNA relationship (neural arc) to a higher SNA, whereas it did not affect the SNA-AP relationship (peripheral arc). SNA was almost doubled [from 63 +/- 15 to 118 +/- 14 arbitrary units (au), P < 0.05] at the CSP level of 93 +/- 8 mmHg, and AP was increased approximately 50% by muscle stretch. When the baroreflex negative feedback loop was closed, muscle stretch increased SNA from 63 +/- 15 to 81 +/- 21 au (P < 0.05) and AP from 93 +/- 8 to 109 +/- 12 mmHg (P < 0.05). In conclusion, the muscle mechanoreflex resets the neural arc to a higher SNA, which moves the operating point towards a higher SNA and AP under baroreflex closed-loop conditions. Analysis of the baroreflex equilibrium diagram indicated that changes in the neural arc induced by the muscle mechanoreflex might compensate for pressure falls resulting from exercise-induced vasodilatation.

0 Bookmarks
 · 
40 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: AIMS: Cilnidipine is a unique Ca(2+) channel blocker that inhibits both L-type and N-type Ca(2+) channels. The present study aimed to assess the effects of intravenous cilnidipine on sympathetic outflow and sympathetic arterial pressure (AP) and heart rate (HR) regulations. MAIN METHODS: Carotid sinus baroreceptor regions were isolated from the systemic circulation in anesthetized and vagotomized Wistar Kyoto rats. Changes in efferent sympathetic nerve activity (SNA), AP and HR in response to a stepwise input of carotid sinus pressure were examined before and during intravenous cilnidipine administration (30 μg/kg bolus + 100 μg kg(-1)h(-1) infusion, n = 6). KEY FINDINGS: Cilnidipine significantly reduced the AP response range (from 68.0 ± 10.2 to 34.6 ± 4.1 mmHg, P = 0.007) but did not affect the SNA response range (from 90.4 ± 10.3 to 84.7 ± 9.5%, P = 0.297) or the HR response range (from 50.4 ± 10.1 to 48.1 ± 6.2 beats/min, P = 0.719). SIGNIFICANCE: Cilnidipine, at a depressor dose used in the present study, does not acutely suppress sympathetic outflow from the central nervous system. Also, it spared the sympathetic HR response, suggesting that N-type Ca(2+) channel blocking action at the cardiac sympathetic nerve endings may be a modest one.
    Life sciences 05/2013; · 2.56 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: We estimated open-loop dynamic characteristics of the carotid sinus baroreflex in normal control rats and chronic heart failure (CHF) rats after myocardial infarction. First, the neural arc transfer function from carotid sinus pressure to splanchnic sympathetic nerve activity (SNA) and its corresponding step response were examined. Although the steady-state response was attenuated in CHF, the negative peak response and the time to peak did not change significantly, suggesting preserved neural arc dynamic characteristics. Next, the peripheral arc transfer function from SNA to arterial pressure (AP) and its corresponding step response were examined. The steady-state response and the initial slope were reduced in CHF, suggesting impaired end-organ responses. In a simulation study based on the dynamic and static characteristics, the percent recovery of AP was reduced progressively as the size of disturbance increased in CHF, suggesting that a reserve for AP buffering is lost in CHF despite relatively maintained baseline AP.
    The Journal of Physiological Sciences 07/2010; 60(4):283-98. · 1.09 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Flexibility is one of the components of physical fitness as well as cardiorespiratory fitness and muscular strength and endurance. Flexibility has long been considered a major component in the preventive treatment of musculotendinous strains. The present study investigated a new aspect of flexibility. Using a cross-sectional study design, we tested the hypothesis that a less flexible body would have arterial stiffening. A total of 526 adults, 20 to 39 yr of age (young), 40 to 59 yr of age (middle-aged), and 60 to 83 yr of age (older), participated in this study. Subjects in each age category were divided into either poor- or high-flexibility groups on the basis of a sit-and-reach test. Arterial stiffness was assessed by brachial-ankle pulse wave velocity (baPWV). Two-way ANOVA indicated a significant interaction between age and flexibility in determining baPWV (P < 0.01). In middle-aged and older subjects, baPWV was higher in poor-flexibility than in high-flexibility groups (middle-aged, 1,260 +/- 141 vs. 1,200 +/- 124 cm/s, P < 0.01; and older, 1,485 +/- 224 vs. 1,384 +/- 199 cm/s, P < 0.01). In young subjects, there was no significant difference between the two flexibility groups. A stepwise multiple-regression analysis (n = 316) revealed that among the components of fitness (cardiorespiratory fitness, muscular strength, and flexibility) and age, all components and age were independent correlates of baPWV. These findings suggest that flexibility may be a predictor of arterial stiffening, independent of other components of fitness.
    AJP Heart and Circulatory Physiology 09/2009; 297(4):H1314-8. · 3.63 Impact Factor