Article

Ameloblast apoptosis and IGF-1 receptor expression in the continuously erupting rat incisor model.

Faculty of Dentistry, Kuwait University, Safat 13110, Kuwait.
APOPTOSIS (Impact Factor: 3.95). 01/2000; 4(6):441-7. DOI: 10.1023/A:1009600409421
Source: PubMed

ABSTRACT Enamel-producing cells (ameloblasts) pass through several phenotypic and functional stages during enamel formation. In the transition between secretory and maturation stages, about one quarter of the ameloblasts suddenly undergo apoptosis. We have studied this phenomenon using the continuously erupting rat incisor model. A special feature of this model is that all stages of ameloblast differentiation are presented within a single longitudinal section of the developing tooth. This permits investigation of the temporal sequence of gene and growth factor receptor expression during ameloblast differentiation and apoptosis. We describe the light and electron microscopic morphology of ameloblast apoptosis and the pattern of insulin-like growth factor-1 receptor expression by ameloblasts in the continuously erupting rat incisor model. In the developing rat incisor, ameloblast apoptosis is associated with downregulated expression of the insulin-like growth factor-1 receptor. These data are consistent with the hypothesis that ameloblasts are "hard wired" for apoptosis and that insulin-like growth factor-1 receptor expression is required to block the default apoptotic pathway. Possible mechanisms of insulin-like growth factor-1 inhibition of ameloblast apoptosis are presented. The rat incisor model may be useful in studies of physiological apoptosis as it presents apoptosis in a predictable pattern in adult tissues.

0 Bookmarks
 · 
56 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: To investigate the spatial and temporal expression of proliferation Ki-67 marker, pro-apoptotic Bax and anti-apoptotic Bcl-2 proteins during early development of the human tooth. Histological sections of eight human conceptuses, 5-10 postovulatory weeks old, were used for immunolocalization for Ki-67, Bax and Bcl-2 markers. Quantification was performed by calculating the fraction of Ki-67 positive cells, expressed as a mean ± SD, and analysed by Mann-Whitney test, Kruskal-Wallis and Dunn's post hoc test. In 6th-7th developmental weeks, the tooth germ and dental crest contained 37% of proliferating cells, which increased to 40% in the 8th week, and then decreased to 15% in the 10th week, whilst the proliferation in the ectomesenchyme subsequently dropped from 37% to 23%. Epithelial parts of the enamel organ displayed similar proliferation activity (31-36%), dental crest 10%, whilst enamel knot showed no proliferating activity. The tooth ectomesenchyme contained more proliferating cells (50%) than the jaw ectomesenchyme (35%), and both dropped to 28% in the 10th week. Ectomesenchyme between the tooth germs contained 23%, whilst the jaw ectomesenchyme contained 15% of proliferating cells. Bcl-2 expression had following pattern: strong in proliferating cells, moderate in tooth germs and dental crest, and weak in the ectomesenchyme. Bax co-expressed with Bcl-2 in the tooth germ and dental crest. In the reticulum and inner enamel epithelium Bcl-2 had prevalent expression, whilst Bax prevailed in the outer enamel epithelium and tooth ectomesenchyme. Proliferating cells most likely influence growth of the tooth germ, Bcl-2 affects proliferation and differentiation of specific cell lineages, whilst Bax influences process of cell death.
    Archives of oral biology 12/2010; 55(12):1007-16. · 1.65 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Rodent incisors are continuously growing teeth that include all stages of amelogenesis. Understanding amelogenesis requires investigations of the genes and their gene products control the ameloblast phenotype. One of the mechanisms related to tooth differentiation is mitogen-activated protein kinase (MAPK) signaling. The extracellular-signal regulated kinase (ERK)/mitogen-activated protein kinase kinase (MEK) cascade is associated with mechanisms that control the cell cycle and cell survival. However, the roles of cascades in incisor development remain to be determined. In this study, we investigated incisor development and growth in the mouse based on MAPK signaling. Moreover, heat-shock protein (Hsp)-25 is well known to be a useful marker of odontoblast differentiation. We used anisomycin (a protein-synthesis inhibitor that activates MAPKs) and U0126 (a MAPK inhibitor that blocks ERK1/2 phosphorylation) to examine the role of MAPKs in Hsp25 signaling in the development of the mouse incisor. We performed immunohistochemistry and in vitro culture using incisor tooth germ, and found that phospho-ERK (pERK), pMEK, and Hsp25 localized in developing incisor ameloblasts and anisomycin failed to produce incisor development. In addition, Western blotting results showed that anisomycin stimulated the phosphorylation of ERK, MEK, and Hsp25, and that some of these proteins were blocked by the U0126. These findings suggest that MAPK signals play important roles in incisor formation, differentiation, and development by mediating Hsp25 signaling.
    Histochemie 03/2009; 131(5):593-603. · 2.61 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: During four days of prenatal development in the mouse, the morphology of the first lower molar moves from the early cap to the bell stage. Five phenomena characterize this period: growth of the tooth germ; development of the cervical loop; histogenesis of the enamel organ; folding of the epithelial-mesenchymal junction associated with cusp formation; and change in cellular heterogeneity in the mesenchyme. All these processes are controlled by epithelial-mesenchymal interactions. These complex histo-morphogenetic events have been documented using histological sections and 3D reconstructions. When combined with functional tests in vitro, this approach allowed searching for possible relationships between simultaneous changes occurring in both the epithelial and ecto-mesenchymal compartments. Parallel changes that occur in the two tissues could result from different mechanisms, as illustrated by the increasing number of pre-odontoblasts and pre-ameloblasts during crown growth. Cell division was involved mainly in the ecto-mesenchyme, while proliferation and cell re-organization occurred in the inner dental epithelium. 3D reconstructions also raised still unsolved questions, such as the possible relationship between cusp size and spatial specification of cell kinetic parameters, changes in cell position within the inner dental epithelium, and tracing cell migration in the mesenchyme during development.
    Australian Dental Journal 02/2014; · 1.37 Impact Factor