Article

Medial temporal lobe atrophy in patients with refractory temporal lobe epilepsy.

Neuroimaging Laboratory, Department of Neurology, State University of Campinas, Brazil.
Journal of Neurology Neurosurgery & Psychiatry (Impact Factor: 4.92). 12/2003; 74(12):1627-30. DOI: 10.1136/jnnp.74.12.1627
Source: PubMed

ABSTRACT The objective of this study was to assess the volumes of medial temporal lobe structures using high resolution magnetic resonance images from patients with chronic refractory medial temporal lobe epilepsy (MTLE).
We studied 30 healthy subjects, and 25 patients with drug refractory MTLE and unilateral hippocampal atrophy (HA). We used T1 magnetic resonance images with 1 mm isotropic voxels, and applied a field non-homogeneity correction and a linear stereotaxic transformation into a standard space. The structures of interest are the entorhinal cortex, perirhinal cortex, parahippocampal cortex, temporopolar cortex, hippocampus, and amygdala. Structures were identified by visual examination of the coronal, sagittal, and axial planes. The threshold of statistical significance was set to p<0.05.
Patients with right and left MTLE showed a reduction in volume of the entorhinal (p<0.001) and perirhinal (p<0.01) cortices ipsilateral to the HA, compared with normal controls. Patients with right MTLE exhibited a significant asymmetry of all studied structures; the right hemisphere structures had smaller volume than their left side counterparts. We did not observe linear correlations between the volumes of different structures of the medial temporal lobe in patients with MTLE.
Patients with refractory MTLE have damage in the temporal lobe that extends beyond the hippocampus, and affects the regions with close anatomical and functional connections to the hippocampus.

0 Bookmarks
 · 
77 Views
  • Source
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: There is a wide range of values reported in volumetric studies of the amygdala. The use of single plane thick magnetic resonance imaging (MRI) may prevent the correct visualization of anatomic landmarks and yield imprecise results. To assess whether there is a difference between volumetric analysis of the amygdala performed with single plane MRI 3-mm slices and with multiplanar analysis of MRI 1-mm slices, we studied healthy subjects and patients with temporal lobe epilepsy. We performed manual delineation of the amygdala on T1-weighted inversion recovery, 3-mm coronal slices and manual delineation of the amygdala on three-dimensional volumetric T1-weighted images with 1-mm slice thickness. The data were compared using a dependent t-test. There was a significant difference between the volumes obtained by the coronal plane-based measurements and the volumes obtained by three-dimensional analysis (P < 0.001). An incorrect estimate of the amygdala volume may preclude a correct analysis of the biological effects of alterations in amygdala volume. Three-dimensional analysis is preferred because it is based on more extensive anatomical assessment and the results are similar to those obtained in post-mortem studies.
    Brazilian Journal of Medical and Biological Research 03/2005; 38(3):409-18. · 1.14 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The entorhinal cortex is thought to support rapid encoding of new associations by serving as an interface between the hippocampus and neocortical regions. Although the entorhinal-hippocampal interaction is undoubtedly essential for initial memory acquisition, the entorhinal cortex contributes to memory retrieval even after the hippocampus is no longer necessary. This suggests that during memory consolidation additional synaptic reinforcement may take place within the cortical network, which may change the connectivity of entorhinal cortex with cortical regions other than the hippocampus. Here, I outline behavioral and physiological findings which collectively suggest that memory consolidation involves the gradual strengthening of connection between the entorhinal cortex and the medial prefrontal/anterior cingulate cortex (mPFC/ACC), a region that may permanently store the learned association. This newly formed connection allows for close interaction between the entorhinal cortex and the mPFC/ACC, through which the mPFC/ACC gains access to neocortical regions that store the content of memory. Thus, the entorhinal cortex may serve as a gatekeeper of cortical memory network by selectively interacting either with the hippocampus or mPFC/ACC depending on the age of memory. This model provides a new framework for a modification of cortical memory network during systems consolidation, thereby adding a fresh dimension to future studies on its biological mechanism.
    Neuroscience Research 01/2014; · 2.20 Impact Factor

Full-text (2 Sources)

View
22 Downloads
Available from
May 27, 2014