Activation of apoptosis signal-regulating kinase 1 in injured artery and its critical role in neointimal hyperplasia.

Department of Pharmacology, Osaka City University Graduate School of Medicine, 1-4-3 Asahimachi, Abeno, Osaka 545-8585, Japan.
Circulation (Impact Factor: 15.2). 01/2004; 108(22):2812-8. DOI: 10.1161/01.CIR.0000096486.01652.FC
Source: PubMed

ABSTRACT Apoptosis signal-regulating kinase 1 (ASK1), recently identified as one of the mitogen-activated protein kinase kinase kinases, is activated by various extracellular stimuli and involved in a variety of cellular function. Therefore, we first examined the role of ASK1 in vascular remodeling.
We used rat balloon injury model and cultured vascular smooth muscle cells (VSMCs). Arterial ASK1 activity was rapidly and dramatically increased after balloon injury. To specifically inhibit endogenous ASK1 activation, dominant-negative mutant of ASK1 (DN-ASK1) was transfected into rat carotid artery before balloon injury. Gene transfer of DN-ASK1 significantly prevented neointimal formation at 14 days after injury. Bromodeoxyuridine labeling index at 7 days after injury showed that DN-ASK1 remarkably suppressed VSMC proliferation in both the intima and the media. We also examined the role of ASK1 in cultured rat VSMCs. Infection with DN-ASK1 significantly attenuated serum-induced VSMC proliferation and migration. We also compared neointimal formation after cuff placement around the femoral artery between mice deficient in ASK1 (ASK1-/- mice) and wild-type (WT) mice. Neointimal formation at 28 days after cuff injury in ASK1-/- mice was significantly attenuated compared with WT mice. Furthermore, we compared the proliferation and migration of VSMCs isolated from ASK1-/- mice with WT mice. Both proliferation and migration of VSMCs from ASK1-/- mice were significantly attenuated compared with VSMCs from WT mice.
ASK1 activation plays the key role in vascular intimal hyperplasia. ASK1 may provide the basis for the development of new therapeutic strategy for vascular diseases.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Renal failure, a major complication associated with multiple myeloma, is usually related to deposition of monoclonal immunoglobulin free light chains (FLCs) and directly contributes to morbidity and mortality in this disease. The present study focused on the cytotoxic effects of monoclonal FLCs. Human proximal tubular epithelial cells (HK-2) were examined after incubation with two human monoclonal FLCs (termed κ2 and λ3). Incubation of HK-2 cells for 24 and 48 hours with either FLCs at 1 mg/mL promoted activation of caspase-9 and caspase-3 and increased the rate of apoptosis. Because prior studies demonstrated that FLCs generated intracellular oxidative stress, our studies focused on the redox-sensitive mitogen-activated protein kinase kinase kinase known as apoptosis signal-regulating kinase 1 (ASK1). A time-dependent increase in phosphorylation of ASK1 at T845, indicating activation of this enzyme, was observed. Small interfering RNA designed to reduce ASK1 expression in HK-2 cells successfully decreased ASK1, which was confirmed by Western blot analysis. Incubation of ASK1-depleted HK-2 cells with the two FLCs prevented the increase in apoptosis while pretreating HK-2 cell with nontargeting small interfering RNA did not prevent FLCs-mediated apoptosis. The combined data demonstrate that monoclonal FLCs activated the intrinsic apoptotic pathway in renal epithelial cells by activation of ASK1.
    American Journal Of Pathology 11/2011; 180(1):41-7. · 4.52 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Chondrosarcoma is the primary malignancy of bone that is characterized by a potent capacity to invade locally and cause distant metastasis, and is therefore associated with poor prognoses. Chondrosarcoma further shows a predilection for metastasis to the lungs. The brain-derived neurotrophic factor (BDNF) is a small molecule in the neurotrophin family of growth factors that is associated with the disease status and outcome of cancers. However, the effect of BDNF on cell motility in human chondrosarcoma cells is mostly unknown. Here, we found that human chondrosarcoma cell lines had significantly higher cell motility and BDNF expression compared to normal chondrocytes. We also found that BDNF increased cell motility and expression of matrix metalloproteinase-1 (MMP-1) in human chondrosarcoma cells. BDNF-mediated cell motility and MMP-1 up-regulation were attenuated by Trk inhibitor (K252a), ASK1 inhibitor (thioredoxin), JNK inhibitor (SP600125), and p38 inhibitor (SB203580). Furthermore, BDNF also promoted Sp1 activation. Our results indicate that BDNF enhances the migration and invasion activity of chondrosarcoma cells by increasing MMP-1 expression through a signal transduction pathway that involves the TrkB receptor, ASK1, JNK/p38, and Sp1. BDNF thus represents a promising new target for treating chondrosarcoma metastasis.
    International Journal of Molecular Sciences 01/2013; 14(8):15459-78. · 2.46 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Apoptosis signal-regulating kinase 1 (ASK1) is a mitogen-activated protein kinase kinase kinase that plays a crucial role in stress-induced apoptosis. Recently, we have reported that suppressed macrophage apoptosis in ASK1 and apolipoprotein E double-knockout mice accelerates atheromatous plaques in the hyperlipidemia-induced atherosclerotic model. However, the pathogenic role of smooth muscle cell (SMC) apoptosis in atherosclerosis still remains unclear. We investigated neointimal remodeling in ligated carotid arteries of ASK1-deficient mice (ASK1(-/-)) for 3 weeks. ASK1(-/-) mice had significantly more suppressed intimal formation, inversely manifesting as potential anti-atherogenic aspects of ASK1 deficiency, characterized by fewer SMCs and less collagen synthesis; and fewer apoptotic SMCs, infiltrating T lymphocytes, and microvessels, associated with decreased apoptosis of luminal endothelial cells, compared with those of wild-type mice. Injured arteries of ASK1(-/-) mice also showed significantly down-regulated expression of pro-apoptotic markers, adhesion molecules, and pro-inflammatory signaling factors. Moreover, tumor necrosis factor-α-induced apoptosis was markedly suppressed in cultured aortic SMCs from ASK1(-/-) mice. These findings suggest that ASK1 accelerates mechanical injury-induced vascular remodeling with activated SMC migration via increased neovascularization and/or enhanced SMC and endothelial cell apoptosis. ASK1 expression, especially in the SMCs, might be crucial, and reciprocally responsible for various pro-atherogenic functions, and SMC apoptosis seems to be detrimental in this model.
    American Journal Of Pathology 11/2012; · 4.52 Impact Factor


Available from