Article

Cocoa has more phenolic phytochemicals and a higher antioxidant capacity than teas and red wine

Cornell University, Итак, New York, United States
Journal of Agricultural and Food Chemistry (Impact Factor: 3.11). 12/2003; 51(25):7292-5. DOI: 10.1021/jf0344385
Source: PubMed

ABSTRACT Black tea, green tea, red wine, and cocoa are high in phenolic phytochemicals, among which theaflavin, epigallocatechin gallate, resveratrol, and procyanidin, respectively, have been extensively investigated due to their possible role as chemopreventive agents based on their antioxidant capacities. The present study compared the phenolic and flavonoid contents and total antioxidant capacities of cocoa, black tea, green tea, and red wine. Cocoa contained much higher levels of total phenolics (611 mg of gallic acid equivalents, GAE) and flavonoids (564 mg of epicatechin equivalents, ECE) per serving than black tea (124 mg of GAE and 34 mg of ECE, respectively), green tea (165 mg of GAE and 47 mg of ECE), and red wine (340 mg of GAE and 163 mg of ECE). Total antioxidant activities were measured using the 2,2'-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid) (ABTS) and 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging assays and are expressed as vitamin C equivalent antioxidant capacities (VCEACs). Cocoa exhibited the highest antioxidant activity among the samples in ABTS and DPPH assays, with VCEACs of 1128 and 836 mg/serving, respectively. The relative total antioxidant capacities of the samples in both assays were as follows in decreasing order: cocoa > red wine > green tea > black tea. The total antioxidant capacities from ABTS and DPPH assays were highly correlated with phenolic content (r2 = 0.981 and 0.967, respectively) and flavonoid content (r2 = 0.949 and 0.915). These results suggest that cocoa is more beneficial to health than teas and red wine in terms of its higher antioxidant capacity.

Download full-text

Full-text

Available from: Chang Yong Lee, Jun 20, 2015
0 Followers
 · 
255 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: To investigate the interactions between caseins and phenolic acids, such as the ones present in chocolate, casein was incubated with protocatechuic acid or p-coumaric acid at 55°C. In addition, casein was isolated from chocolate and the phenolic compounds within these caseins were quantified. Electrophoresis results revealed that casein-phenolic interactions were induced by incubation; minor aggregation of casein subunits was observed after incubation of casein with protocatechuic acid. Minor aggregation of casein isolated from milk chocolate was also observed. In vitro hydrolysis of casein control, casein-protocatechuic acid, casein-p-coumaric acid, caseins isolated from milk chocolate and white chocolate using trypsin showed degree of hydrolysis of 19.3, 18.6, 17.7, 10.4 and 17.8% respectively. The presence of protocatechuic acid and p-coumaric acid in the model system and the presence of phenolic compounds in milk chocolate, in addition to the structural changes occurring during processing, affected the peptide profiles of casein hydrolysates.
    Food Research International 05/2015; 74. DOI:10.1016/j.foodres.2015.05.006 · 3.05 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Recent reports on cocoa are appealing in that a food commonly consumed for pure pleasure might also bring tangible benefits for human health. Cocoa consumption is correlated with reduced health risks of cardiovascular diseases, hypertension, atherosclerosis, and cancer, and the health-promoting effects of cocoa are mediated by cocoa-driven phytochemicals. Cocoa is rich in procyanidins, theobromine, (-)-epicatechin, catechins, and caffeine. Among the phytochemicals present in consumed cocoa, theobromine is most available in human plasma, followed by caffeine, (-)-epicatechin, catechin, and procyanidins. It has been reported that cocoa phytochemicals specifically modulate or interact with specific molecular targets linked to the pathogenesis of chronic human diseases, including cardiovascular diseases, cancer, neurodegenerative diseases, obesity, diabetes, and skin aging. This review summarizes comprehensive recent findings on the beneficial actions of cocoa-driven phytochemicals in molecular mechanisms of human health.
    Critical reviews in food science and nutrition 02/2014; 54(11):1458-72. DOI:10.1080/10408398.2011.641041 · 5.55 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Background: Alzheimer's disease (AD) is the most common age-related neurodegenerative disorder, characterized by pathological aggregates of amyloid peptide-β (Aβ) and tau protein. Currently available therapies mediate AD symptoms without modifying disease progression. Polyphenol-rich diets are reported to reduce the risk for AD. Objective: In the present study, we investigated the AD disease-modifying effects of cocoa, a rich source of flavanols, which are a class of polyphenols. We hypothesized that cocoa extracts interfere with amyloid-β oligomerization to prevent synaptic deficits. Methods: We tested the effects of three different cocoa extracts, viz. Natural, Dutched, and Lavado extracts, on Aβ42 and Aβ40 oligomerization, using photo-induced cross-linking of unmodified proteins technique. To assess the effects of cocoa extracts on synaptic function, we measured long term potentiation in mouse brain hippocampal slices exposed to oligomeric Aβ. Results: Our results indicate that cocoa extracts are effective in preventing the oligomerization of Aβ, with Lavado extract being most effective. Lavado extract, but not Dutched extract, was effective in restoring the long term potentiation response reduced by oligomeric Aβ. Conclusion: Our findings indicate that cocoa extracts have multiple disease-modifying properties in AD and present a promising route of therapeutic and/or preventative initiatives.
    Journal of Alzheimer's disease: JAD 01/2014; 41(2):643-50. DOI:10.3233/JAD-132231 · 3.61 Impact Factor