Article

Do rats have a prefrontal cortex?

Netherlands Institute for Brain Research, KNAW, Graduate School Neurosciences, Meibergdreef 33, 1105 AZ, Amsterdam, The Netherlands.
Behavioural Brain Research (Impact Factor: 3.33). 12/2003; 146(1-2):3-17. DOI: 10.1016/j.bbr.2003.09.028
Source: PubMed

ABSTRACT The lack of a single anatomical or functional definition of 'prefrontal cortex' has led to different and, in some respects, controversial views on the existence of a prefrontal cortex in non-primate mammals, in particular in rats. Until the classic paper by Rose and Woolsey [Res. Publ. Assoc. Nerv. Ment. Dis. 27 (1948) 210], the general idea was that a prefrontal cortex is unique to primate species. Rose and Woolsey's 'prefrontal cortex' definition was based upon a single anatomical criterion, i.e. the cortical projection area of the mediodorsal thalamic nucleus. Single criteria, however, do not appear to be sufficient for defining the prefrontal cortex. Therefore, other anatomical and functional characteristics are currently used to identify the prefrontal cortex in different species. Yet, recently the debate about the nature of the prefrontal cortex in non-primate species has been resumed. In the present paper we will compare the structural and functional characteristics of the prefrontal cortex of nonhuman primates and rats. We will argue that rats have a functionally divided prefrontal cortex that includes not only features of the medial and orbital areas in primates, but also some features of the primate dorsolateral prefrontal cortex.

0 Bookmarks
 · 
126 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We studied how nicotinic acetylcholine receptors (nAChRs) regulate glutamate release in the secondary motor area (Fr2) of the dorsomedial murine prefrontal cortex, in the presence of steady agonist levels. Fr2 mediates response to behavioral situations that require immediate attention and is a candidate for generating seizures in the frontal epilepsies caused by mutant nAChRs. Morphological analysis showed a peculiar chemoarchitecture and laminar distribution of pyramidal cells and interneurons. Tonic application of 5 μM nicotine on layer V pyramidal neurons strongly increased the frequency of spontaneous glutamatergic excitatory postsynaptic currents (EPSCs). The effect was inhibited by 1 μM dihydro-β-erythroidine (DHβE, which blocks α4-containing nAChRs), but not by 10 nM methyllicaconitine (MLA, which blocks α7-containing receptors). EPSCs were also stimulated by 5-iodo-3-[2(S)-azetidinylmethoxy]pyridine (5IA85380), selective for β2-containing receptors, in a DHβE-sensitive way. We next studied the association of α4 with different populations of glutamatergic terminals, by using as markers the vesicular glutamate transporter type 1 (VGLUT1) for cortico-cortical synapses, and type 2 (VGLUT2) for thalamo-cortical projecting fibers. Immunoblots showed higher expression of α4 in Fr2, as compared to the somatosensory (SS) cortex. Immunofluorescence showed intense VGLUT1 staining throughout the cortical layers, whereas VGLUT2 immunoreactivity displayed a more distinct laminar distribution. In layer V, co-localization of α4 nAChR subunit with both VGLUT1 and VGLUT2 was considerably stronger in Fr2 than in SS cortex. Thus, in Fr2, α4β2 nAChRs are expressed in both intrinsic and extrinsic glutamatergic terminals and give a major contribution to control glutamate release in layer V, in the presence of tonic agonist levels. Synapse, 2013. © 2013 Wiley Periodicals, Inc.
    Synapse 02/2013; · 2.31 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: In the present study, we assessed the involvement of the prefrontal cortex (PFC) in the ability of rats to perform crossmodal (tactile-to-visual) object recognition tasks. We tested rats with 3 different types of bilateral excitotoxic lesions: (1) Large PFC lesions, including the medial PFC (mPFC) and ventral and lateral regions of the orbitofrontal cortex (OFC); (2) selective mPFC lesions; and (3) selective OFC lesions. Rats were tested on 2 versions of crossmodal object recognition (CMOR): (1) The original CMOR task, which uses a tactile-only sample phase and a visual-only choice phase; and (2) a "multimodal pre-exposure" version (PE/CMOR), in which simultaneous pre-exposure to the tactile and visual features of an object facilitates CMOR performance over longer memory delays. Inclusive PFC lesions disrupted performance on both versions of CMOR, whereas selective mPFC damage had no effect. Lesions limited to the OFC caused delay-dependent deficits on the CMOR task, but failed to reverse the enhancement produced by multimodal object pre-exposure. This pattern of functional dissociations suggests complex, multidimensional contributions of the PFC and its subregions to crossmodal cognition.
    Cerebral Cortex 03/2013; · 8.31 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Different components of executive function such as working memory, attention, and cognitive flexibility can be dissociated behaviorally and mechanistically; however, the within-subject influences of normal aging on different aspects of executive function remain ill-defined. To better define these relationships, young adult and aged male F344 rats were cross-characterized on an attentional set-shifting task that assesses cognitive flexibility and a delayed response task that assesses working memory. Across tasks, aged rats were impaired relative to young; however, there was significant variability in individual performance within the aged cohort. Notably, performance on the set-shifting task and performance at long delays on the delayed response task were inversely related among aged rats. Additional experiments showed no relationship between aged rats' performance on the set-shifting task and performance on a hippocampal-dependent spatial reference memory task. These data indicate that normal aging can produce distinct manifestations of executive dysfunction, and support the need to better understand the unique mechanisms contributing to different forms of prefrontal cortical-supported executive decline across the lifespan.
    Neurobiology of aging 04/2013; · 5.94 Impact Factor

Full-text (2 Sources)

View
401 Downloads
Available from
May 16, 2014