Article

Do rats have a prefrontal cortex?

Netherlands Institute for Brain Research, KNAW, Graduate School Neurosciences, Meibergdreef 33, 1105 AZ, Amsterdam, The Netherlands.
Behavioural Brain Research (Impact Factor: 3.33). 12/2003; 146(1-2):3-17. DOI: 10.1016/j.bbr.2003.09.028
Source: PubMed

ABSTRACT The lack of a single anatomical or functional definition of 'prefrontal cortex' has led to different and, in some respects, controversial views on the existence of a prefrontal cortex in non-primate mammals, in particular in rats. Until the classic paper by Rose and Woolsey [Res. Publ. Assoc. Nerv. Ment. Dis. 27 (1948) 210], the general idea was that a prefrontal cortex is unique to primate species. Rose and Woolsey's 'prefrontal cortex' definition was based upon a single anatomical criterion, i.e. the cortical projection area of the mediodorsal thalamic nucleus. Single criteria, however, do not appear to be sufficient for defining the prefrontal cortex. Therefore, other anatomical and functional characteristics are currently used to identify the prefrontal cortex in different species. Yet, recently the debate about the nature of the prefrontal cortex in non-primate species has been resumed. In the present paper we will compare the structural and functional characteristics of the prefrontal cortex of nonhuman primates and rats. We will argue that rats have a functionally divided prefrontal cortex that includes not only features of the medial and orbital areas in primates, but also some features of the primate dorsolateral prefrontal cortex.

0 Bookmarks
 · 
144 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The cognitive role of the cerebellum is critically tied to its distributed connections throughout the brain. Accumulating evidence from anatomical, structural and functional imaging, and lesion studies advocate a cognitive network involving indirect connections between the cerebellum and non-motor areas in the prefrontal cortex. Cerebellar stimulation dynamically influences activity in several regions of the frontal cortex and effectively improves cognition in schizophrenia. In this manuscript, we summarize current literature on the cingulocerebellar circuit and we introduce a method to interrogate this circuit combining opotogenetics, neuropharmacology, and electrophysiology in awake-behaving animals while minimizing incidental stimulation of neighboring cerebellar nuclei. We propose the novel hypothesis that optogenetic cerebellar stimulation can restore aberrant frontal activity and rescue impaired cognition in schizophrenia. We focus on how a known cognitive region in the frontal cortex, the anterior cingulate, is influenced by the cerebellum. This circuit is of particular interest because it has been confirmed using tracing studies, neuroimaging reveals its role in cognitive tasks, it is conserved from rodents to humans, and diseases such as schizophrenia and autism appear in its aberrancy. Novel tract tracing results presented here provide support for how these two areas communicate. The primary pathway involves a disynaptic connection between the cerebellar dentate nuclei (DN) and the anterior cingulate cortex. Secondarily, the pathway from cerebellar fastigial nuclei (FN) to the ventral tegmental area, which supplies dopamine to the prefrontal cortex, may play a role as schizophrenia characteristically involves dopamine deficiencies. We hope that the hypothesis described here will inspire new therapeutic strategies targeting currently untreatable cognitive impairments in schizophrenia.
    Frontiers in Systems Neuroscience 09/2014; 8:163.
  • Source
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: To further characterize the role of frontal and parietal cortices in rat cognition, we recorded action potentials simultaneously from multiple sites in the medio-dorsal frontal cortex and posterior parietal cortex of rats while they performed a two-choice auditory detection task. We quantified neural correlates of task performance, including response movements, perception of a target tone, and the differentiation between stimuli with distinct features (different pitches or durations). A minority of units-15% in frontal cortex, 23% in parietal cortex-significantly distinguished hit trials (successful detections, response movement to the right) from correct rejection trials (correct leftward response to the absence of the target tone). Estimating the contribution of movement-related activity to these responses suggested that more than half of these units were likely signaling correct perception of the auditory target, rather than merely movement direction. In addition, we found a smaller and mostly not overlapping population of units that differentiated stimuli based on task-irrelevant details. The detection-related spiking responses we observed suggest that correlates of perception in the rat are sparsely represented among neurons in the rat's frontal-parietal network, without being concentrated preferentially in frontal or parietal areas.
    PLoS ONE 01/2014; 9(12):e114064. · 3.53 Impact Factor

Full-text (2 Sources)

Download
524 Downloads
Available from
May 16, 2014

Similar Publications