Multispecific vaccine-induced mucosal cytotoxic T lymphocytes reduce acute-phase viral replication but fail in long-term control of simian immunodeficiency virus SIVmac239.

Wisconsin Primate Research Center. Department of Pathology and Laboratory Medicine, University of Wisconsin, Madison, Wisconsin 53715, USA.
Journal of Virology (Impact Factor: 4.65). 01/2004; 77(24):13348-60. DOI: 10.1128/JVI.77.24.13348-13360.2003
Source: PubMed

ABSTRACT Given the current difficulties generating vaccine-induced neutralizing antibodies to human immunodeficiency virus (HIV), the focus of the vaccine community has shifted toward creating cytotoxic-T-lymphocyte (CTL)-based vaccines. Recent reports of CTL-based vaccine trials in macaques challenged with simian/human immunodeficiency virus SHIV-89.6P have supported the notion that such vaccines can ameliorate the course of disease. However, almost all of these studies included Env as an immunogen and since SHIV-89.6P is sensitive to neutralizing antibodies it is difficult to determine the mechanism(s) of protection. Consequently, SHIV-89.6P challenge of macaques may be a poor model for determining vaccine efficacy in humans. To ascertain the effect of vaccine-induced multispecific mucosal CTL, in the absence of Env-specific antibody, on the control of an immunodeficiency virus challenge, we vaccinated Mamu-A*01(+) macaques with constructs encoding a combination of CTL epitopes and full-length proteins (Tat, Rev, and Nef) by using a DNA prime/recombinant modified vaccinia virus Ankara (rMVA) boost regimen. The vaccination induced virus-specific CTL and CD4(+) helper T lymphocytes with CTL frequencies as high as 20,000/million peripheral blood mononuclear cells. The final rMVA vaccination, delivered intravenously, engendered long-lived mucosal CTL. At 16 weeks after the final rMVA vaccination, the vaccinees and naive, Mamu-A*01(+) controls were challenged intrarectally with SIVmac239. Massive early anamnestic cellular immune responses controlled acute-phase viral replication; however, the three vaccinees were unable to control virus replication in the chronic phase. The present study suggests that multispecific mucosal CTL, in the absence of neutralizing antibodies, can achieve a modicum of control over early viral replication but are unable to control chronic-phase viral replication after a high-dose mucosal challenge with a pathogenic simian immunodeficiency virus.

Download full-text


Available from: Deborah Heydenburg Fuller, Jul 03, 2015
1 Follower
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: To evaluate the efficacy of a multigenic vaccine and its protective immunity in the SIVmac239 challenge model, 12 rhesus macaques were divided into two groups. The vaccine group was intramuscularly immunized with multigenic DNA and recombinant adenovirus vaccine, while the control group received buffers. At 16 weeks after the last immunization, all macaques were challenged orally with pathogenic SIVmac239. The mean plasma SIV RNA loads of the vaccine group were significantly lower than those of the placebo control group up to 16 weeks post-challenge. The vaccine-induced Gag-specific IFN-gamma ELISPOT T cell responses inversely correlated with the viral loads before the chronic phase. Two out of six vaccinated macaques with strong and sustained Gag-specific T cell responses showed viremia control and maintained CD4+ T cell percentage. However, the other four vaccinated macaques showed high viral loads and reduced level of CD4+ T cell percentages during the chronic phase, comparable to those in control macaques. Five out of six vaccinated macaques survived for more than 72 weeks, while five out of six controls died of an AIDS-related disease. Therefore, the vaccination conferred not only reduction of viral loads in a portion of vaccinated macaques (2/6), but also prolonged survival of all vaccinated macaques regardless of viremia control. Our results further suggest that new experimental approaches may be needed to assess protective effects from AIDS-associated disease in the immunized macaques after oral SIV challenge.
    Vaccine 09/2008; 26(51):6690-8. DOI:10.1016/j.vaccine.2008.07.055 · 3.49 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The only long-term and cost-effective solution to the human immunodeficiency virus (HIV) epidemic in the developing world is a vaccine that prevents individuals from becoming infected or, once infected, from passing the virus on to others. There is currently little hope for an AIDS vaccine. Conventional attempts to induce protective antibody and CD8(+) lymphocyte responses against HIV and simian immunodeficiency virus (SIV) have failed. The enormous diversity of the virus has only recently been appreciated by vaccinologists, and our assays to determine CD8(+) lymphocyte antiviral efficacy are inadequate. The central hypothesis of a CTL-based vaccine is that particularly effective CD8(+) lymphocytes directed against at least five epitopes that are derived from regions under functional and structural constraints will control replication of pathogenic SIV. This would be somewhat analogous to control of virus replication by triple drug therapy or neutralizing antibodies.
    Memórias do Instituto Oswaldo Cruz 04/2008; 103(2):119-29. DOI:10.1590/S0074-02762008000200001 · 1.57 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We previously reported that an envelope (Env) glycoprotein immunogen (o-gp140DeltaV2SF162) containing a partial deletion in the second variable loop (V2) derived from the R5-tropic HIV-1 isolate SF162 partially protected vaccinated rhesus macaques against pathogenic SHIV(SF162P4) virus. Extending our studies to subtype C isolate TV1, we have purified o-gp140DeltaV2TV1 (subtype C DeltaV2 trimer) to homogeneity, performed glycosylation analysis, and determined its ability to bind CD4, as well as a panel of well-characterized neutralizing monoclonal antibodies (mAb). In general, critical epitopes are preserved on the subtype C DeltaV2 trimer; however, we did not observe significant binding for the b12 mAb. The molecular mass of subtype C DeltaV2 trimer was found to be 450 kDa, and the hydrodynamic radius was found to be 10.87 nm. Our data suggest that subtype C DeltaV2 trimer binds to CD4 with an affinity comparable to o-gp140DeltaV2SF162 (subtype B DeltaV2 trimer). Using isothermal titration calorimetric (ITC) analysis, we demonstrated that all three CD4 binding sites (CD4-BS) in both subtype C and B trimers are exposed and accessible. However, compared to subtype B trimer, the three CD4-BS in subtype C trimer have different affinities for CD4, suggesting a cooperativity of CD4 binding in subtype C trimer but not in subtype B trimer. Negative staining electron microscopy of the subtype C DeltaV2 trimer has demonstrated that it is in fact a trimer. These results highlight the importance of studying subtype C Env, and also of developing appropriate subtype C-specific reagents that may be used for better immunological characterization of subtype C Env for developing an AIDS vaccine.
    Virology 04/2008; 372(2):273-90. DOI:10.1016/j.virol.2007.10.022 · 3.28 Impact Factor