Chemical neuroanatomy of the fly's movement detection pathway

Arizona Research Laboratories, Division of Neurobiology, University of Arizona, Tucson, Arizona 85721, USA.
The Journal of Comparative Neurology (Impact Factor: 3.51). 01/2004; 468(1):6-23. DOI: 10.1002/cne.10929
Source: PubMed

ABSTRACT In Diptera, subsets of small retinotopic neurons provide a discrete channel from achromatic photoreceptors to large motion-sensitive neurons in the lobula complex. This pathway is distinguished by specific affinities of its neurons to antisera raised against glutamate, aspartate, gamma-aminobutyric acid (GABA), choline acetyltransferase (ChAT), and a N-methyl-D-aspartate type 1 receptor protein (NMDAR1). Large type 2 monopolar cells (L2) and type 1 amacrine cells, which in the external plexiform layer are postsynaptic to the achromatic photoreceptors R1-R6, express glutamate immunoreactivity as do directionally selective motion-sensitive tangential neurons of the lobula plate. L2 monopolar cells ending in the medulla are accompanied by terminals of a second efferent neuron T1, the dendrites of which match NMDAR1-immunoreactive profiles in the lamina. L2 and T1 endings visit ChAT and GABA-immunoreactive relays (transmedullary neurons) that terminate from the medulla in a special layer of the lobula containing the dendrites of directionally selective retinotopic T5 cells. T5 cells supply directionally selective wide-field neurons in the lobula plate. The present results suggest a circuit in which initial motion detection relies on interactions among amacrines and T1, and the subsequent convergence of T1 and L2 at transmedullary cell dendrites. Convergence of ChAT-immunoreactive and GABA-immunoreactive transmedullary neurons at T5 dendrites in the lobula, and the presence there of local GABA-immunoreactive interneurons, are suggested to provide excitatory and inhibitory elements for the computation of motion direction. A comparable immunocytological organization of aspartate- and glutamate-immunoreactive neurons in honeybees and cockroaches further suggests that neural arrangements providing directional motion vision in flies may have early evolutionary origins.

  • [Show abstract] [Hide abstract]
    ABSTRACT: In the fly's visual motion pathways, two cell types-T4 and T5-are the first known relay neurons to signal small-field direction-selective motion responses [1]. These cells then feed into large tangential cells that signal wide-field motion. Recent studies have identified two types of columnar neurons in the second neuropil, or medulla, that relay input to T4 from L1, the ON-channel neuron in the first neuropil, or lamina, thus providing a candidate substrate for the elementary motion detector (EMD) [2]. Interneurons relaying the OFF channel from L1's partner, L2, to T5 are so far not known, however. Here we report that multiple types of transmedulla (Tm) neurons provide unexpectedly complex inputs to T5 at their terminals in the third neuropil, or lobula. From the L2 pathway, single-column input comes from Tm1 and Tm2 and multiple-column input from Tm4 cells. Additional input to T5 comes from Tm9, the medulla target of a third lamina interneuron, L3, providing a candidate substrate for L3's combinatorial action with L2 [3]. Most numerous, Tm2 and Tm9's input synapses are spatially segregated on T5's dendritic arbor, providing candidate anatomical substrates for the two arms of a T5 EMD circuit; Tm1 and Tm2 provide a second. Transcript profiling indicates that T5 expresses both nicotinic and muscarinic cholinoceptors, qualifying T5 to receive cholinergic inputs from Tm9 and Tm2, which both express choline acetyltransferase (ChAT). We hypothesize that T5 computes small-field motion signals by integrating multiple cholinergic Tm inputs using nicotinic and muscarinic cholinoceptors.
    Current biology: CB 04/2014; 24(10). DOI:10.1016/j.cub.2014.03.051 · 9.92 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Octopamine (OA) underlies reinforcement during appetitive conditioning in the honey bee and fruit fly, acting via different subtypes of receptors. Recently, antibodies raised against a peptide sequence of one honey bee OA receptor, AmOA1, were used to study the distribution of these receptors in the honey bee brain (Sinakevitch et al., 2011). These antibodies also recognize an isoform of the AmOA1 ortholog in the fruit fly (OAMB, mushroom body OA receptor). Here we describe in detail the distribution of AmOA1 receptors in different types of neurons in the honey bee and fruit fly antennal lobes. We integrate this information into a detailed anatomical analysis of olfactory receptor neurons (ORNs), uni- and multi-glomerular projection neurons (uPNs, and mPNs) and local interneurons (LNs) in glomeruli of the antennal lobe. These neurons were revealed by dye injection into the antennal nerve, antennal lobe, medial and lateral antenno-protocerbral tracts (m-APT and l-APT), and lateral protocerebral lobe (LPL) by use of labeled cell lines in the fruit fly or by staining with anti-GABA. We found that ORN receptor terminals and uPNs largely do not show immunostaining for AmOA1. About seventeen GABAergic mPNs leave the antennal lobe through the ml-APT and branch into the LPL. Many, but not all, mPNs show staining for AmOA1. AmOA1 receptors are also in glomeruli on GABAergic processes associated with LNs. The data suggest that in both species one important action of OA in the antennal lobe involves modulation of different types of inhibitory neurons via AmOA1 receptors. We integrated this new information into a model of circuitry within glomeruli of the antennal lobes of these species.
    Frontiers in Systems Neuroscience 01/2013; 7:70. DOI:10.3389/fnsys.2013.00070
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Carsten H. G. Müller, Verena Rieger, Yvan Perez, We examined epibenthic and pelagic species of Chaetognatha (Spadellidae and Sagittidae) using immunohistofluorescence and confocal laser scanning microscopy to detect tubulin and cell nuclei in whole-mount preparations and scanning and transmission electron microscopy to visualize the ultrastructural organisation of their ciliary sense organs. All chaetognaths bear three types of ciliary sense organs distributed throughout the body: (1) transversally oriented ciliary fence organs, (2) longitudinally (parallel to the anterior-posterior axis) oriented ciliary tuft organs, and (3) a ciliary loop, the corona ciliata. This study targets the ciliary fence as well as the ciliary tuft organs. Two types of primary receptor cells constitute the ciliary fence and ciliary tuft organs. The first type of receptor cells forms a single cell line along the midline axis of the organs, whereas the second type of receptor cells forms multiple lines of cells at either side of type 1 cells. Each receptor cell extends a single, non-locomotory cilium from its narrow apex collared by slender, non-reinforced microvilli; however, both types of sensory cells considerably differ on ultrastructural level. Type 1 sensory cells have thicker cilia than those protruded by the type 2 sensory cells which are characterized by rootlets consisting of an elongated, amorphous distal as well as a cross-striated proximal portion. These results likely reveal that both types of sensory cells have distinct functions.
    Zoomorphology 06/2014; 133(2). DOI:10.1007/s00435-013-0211-6 · 1.28 Impact Factor


Available from
Sep 26, 2014