Article

A novel syndrome combining thyroid and neurological abnormalities is associated with mutations in a monocarboxylate transporter gene.

Department of Human Genetics, University of Chicago, Chicago, IL 60637, USA.
The American Journal of Human Genetics (Impact Factor: 10.99). 02/2004; 74(1):168-75. DOI: 10.1086/380999
Source: PubMed

ABSTRACT Thyroid hormones are iodothyronines that control growth and development, as well as brain function and metabolism. Although thyroid hormone deficiency can be caused by defects of hormone synthesis and action, it has not been linked to a defect in cellular hormone transport. In fact, the physiological role of the several classes of membrane transporters remains unknown. We now report, for the first time, mutations in the monocarboxylate transporter 8 (MCT8) gene, located on the X chromosome, that encodes a 613-amino acid protein with 12 predicted transmembrane domains. The propositi of two unrelated families are males with abnormal relative concentrations of three circulating iodothyronines, as well as neurological abnormalities, including global developmental delay, central hypotonia, spastic quadriplegia, dystonic movements, rotary nystagmus, and impaired gaze and hearing. Heterozygous females had a milder thyroid phenotype and no neurological defects. These findings establish the physiological importance of MCT8 as a thyroid hormone transporter.

0 Followers
 · 
73 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Most of our knowledge on the mechanisms of thyroid hormone (TH) dependent brain development is based on clinical observations and animal studies of maternal/fetal hypothyroidism. THs play an essential role in brain development and hormone deficiency during critical phases in fetal life may lead to severe and permanent brain damage. Maternal hypothyroidism is considered the most common cause of fetal TH deficiency, but the problem may also arise in the fetus. In the case of congenital hypothyroidism due to defects in fetal thyroid gland development or hormone synthesis, clinical symptoms at birth are often mild as a result of compensatory maternal TH supply. TH transporters (THTs) and deiodinases (Ds) are important regulators of intracellular triiodothyronine (T3) availability and therefore contribute to the control of thyroid receptors (TRs)-dependent CNS development and early embryonic life. Defects in fetal THTs or Ds may have more impact on fetal brain since they can result in intracellular T3 deficiency despite sufficient maternal TH supply. One clear example is the recent discovery of mutations in the TH transporter (monocarboxylate transporter 8; MCT8) that could be linked to a syndrome of severe and non reversible psychomotor retardation. Even mild and transient changes in maternal TH levels can directly affect and alter the gene expression profile, and thus disturb fetal brain development. Animal studies are needed to increase our understanding of the exact role of THTs and Ds in prenatal brain development.
    Thyroid Research 12/2015; 8(1). DOI:10.1186/s13044-015-0013-7
  • [Show abstract] [Hide abstract]
    ABSTRACT: Thyroid hormones (TH) cross the plasma membrane with the help of transporter proteins. As charged amino acid derivatives, TH cannot simply diffuse across a lipid bilayer membrane, despite their notorious hydrophobicity. The identification of monocarboxylate transporter 8 (MCT8, SLC16A2) as a specific and very active TH transporter paved the way to the finding that mutations in the MCT8 gene cause a syndrome of psychomotor retardation in humans. The purpose of this review is to introduce the current model of transmembrane transport and highlight the diversity of TH transmembrane transporters. The interactions of TH with plasma transfer proteins, T3 receptors, and deiodinase are summarized. It is shown that proteins may bind TH owing to their hydrophobic character in hydrophobic cavities and/or by specific polar interaction with the phenolic hydroxyl, the aminopropionic acid moiety, and by weak polar interactions with the iodine atoms. These findings are compared with our understanding of how TH transporters interact with substrate. The presumed effects of mutations in MCT8 on protein folding and transport function are explained in light of the available homology model.
    09/2014; 3(3):143-53. DOI:10.1159/000367858
  • [Show abstract] [Hide abstract]
    ABSTRACT: Allan-Herndon-Dudley syndrome (AHDS, MIM 300523) is an X-linked neurodegenerative disorder characterized by intellectual disability, severe hypotonia, diminished muscle mass, and progressive spastic paraplegia. All affected males have pathognomonic thyroid profiles with an elevated T3 , low-normal free T4 , and normal TSH. Mutations in the monocarboxylate transporter 8 (MCT8) gene, SLC16A2, have been found to be causative. Here, we describe a proband whose extensive evaluation and ultimate diagnosis of AHDS unmasked three previously undiagnosed generations of affected individuals in one family. This case illustrates the need for clinicians to consider obtaining full thyroid studies on individuals with the non-specific findings of severe hypotonia, failure to thrive, and gross motor delay. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.
    American Journal of Medical Genetics Part A 03/2015; DOI:10.1002/ajmg.a.36970 · 2.05 Impact Factor

Full-text (2 Sources)

Download
52 Downloads
Available from
Jun 6, 2014