Refinement of the structure of human Rab5a GTPase domain at 1.05 A Ê resolution

Oklahoma City University, Oklahoma City, Oklahoma, United States
Acta Crystallographica Section D Biological Crystallography (Impact Factor: 2.67). 02/2004; 60(Pt 1):54-60. DOI: 10.1107/S0907444903021632
Source: PubMed


Rab5 is a GTPase that regulates early endosome fusion. Its GTPase domain crystal structure is reported here at 1.05 A resolution in complex with a GTP-analog molecule. It provides the highest resolution three-dimensional model so far obtained for proteins from the Ras-like GTPase family. This study allows extension of structural examination of the GTPase machinery as well as of high-resolution protein structures in general. For example, a buried water-molecule network was observed underneath the switch regions, which is consistent with the functional roles of these regions in the molecular-switching process. Furthermore, residues of multiple conformation and clustered distribution of anisotropic thermal motions of the protein molecule may have general implications for the function of Ras-like GTPases.

Download full-text


Available from: Guangyu Zhu, Aug 14, 2014
15 Reads
  • Source
  • [Show abstract] [Hide abstract]
    ABSTRACT: Rab5 is a small GTPase that regulates early endosome fusion. We present here the crystal structure of the Rab5 GTPase domain in complex with a GTP analog and the C-terminal domain of effector Rabaptin5. The proteins form a dyad-symmetric Rab5-Rabaptin5(2)-Rab5 ternary complex with a parallel coiled-coil Rabaptin5 homodimer in the middle. Two Rab5 molecules bind independently to the Rabaptin5 dimer using their switch and interswitch regions. The binding does not involve the Rab complementarity-determining regions. We also present the crystal structures of two distinct forms of GDP-Rab5 complexes, both of which are incompatible with Rabaptin5 binding. One has a dislocated and disordered switch I but a virtually intact switch II, whereas the other has its beta-sheet and both switch regions reorganized. Biochemical and functional analyses show that the crystallographically observed Rab5-Rabaptin5 complex also exists in solution, and disruption of this complex by mutation abrogates endosome fusion.
    Nature Structural & Molecular Biology 11/2004; 11(10):975-83. DOI:10.1038/nsmb832 · 13.31 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Two new structures of the SRP GTPase Ffh have been determined at 1.1 A resolution and provide the basis for comparative examination of the extensive water structure of the apo conformation of these GTPases. A set of well defined water-binding positions have been identified in the active site of the two-domain ;NG' GTPase, as well as at two functionally important interfaces. The water hydrogen-bonding network accommodates alternate conformations of the protein side chains by undergoing local rearrangements and, in one case, illustrates binding of a solute molecule within the active site by displacement of water molecules without further disruption of the water-interaction network. A subset of the water positions are well defined in several lower resolution structures, including those of different nucleotide-binding states; these appear to function in maintaining the protein structure. Consistent arrangements of surface water between three different ultrahigh-resolution structures provide a framework for beginning to understand how local water structure contributes to protein-ligand and protein-protein binding in the SRP GTPases.
    Acta Crystallographica Section D Biological Crystallography 01/2007; 62(Pt 12):1520-34. DOI:10.1107/S0907444906040807 · 2.67 Impact Factor
Show more