Caspase 10 levels are increased following DNA damage in a p53-dependent manner.

Laboratory of Molecular Oncology and Cell Cycle Regulation, Howard Hughes Medical Institute, Departments of Medicine, Abramson Cancer Center, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA.
Cancer biology & therapy (Impact Factor: 3.29). 11/2003; 2(6):707-12. DOI: 10.4161/cbt.2.6.626
Source: PubMed

ABSTRACT p53 plays a central role in the cellular response to stressful stimuli, including DNA damage, aberrant growth signals, and hypoxia. Upon activation, it binds to a specific DNA binding motif and functions to transcriptionally activate or repress different groups of genes. The biologic outcome of these events can lead to cell-cycle arrest, DNA repair, or apoptosis. While many downstream targets of p53 have been identified, the factors that determine which of these outcomes will occur in an individual cell are less clear. In this study, we show that caspase 10, an initiator caspase, is induced in response to DNA damaging chemotherapeutic agents in a p53-dependent manner. Following treatment with etoposide or adriamycin, induction of caspase 10 occurred at both the mRNA and protein levels. In contrast, DNA damage did not affect levels of caspase 8, another initiator caspase with significant structural and functional homology to caspase 10. By chromatin immunoprecipitation assay, p53 bound in vivo to multiple p53-specific binding sites located within the caspase 10 gene locus, suggesting that caspase 10 is a direct transcriptional target of p53. Upregulation of caspase 10 may represent one factor that determines how p53 activation leads to cellular apoptosis following DNA damage.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Cisplatin, a coordination platinum complex, is used as a potential anti-neoplastic agent, having well recognized DNA-damaging property that triggers cell-cycle arrest and cell death in cancer therapy. Beneficial chemotherapeutic actions of cisplatin can be detrimental for kidneys. Unbound cisplatin gets accumulated in renal tubular cells, leading to cell injury and death. This liable action of cisplatin on kidneys is mediated by altered intracellular signalling pathways such as mitogen-activated protein kinase (MAPK), extracellular regulated kinase (ERK), or C- Jun N terminal kinase/stress-activated protein kinase (JNK/SAPK). Further, these signalling alterations are responsible for release and activation of tumour necrosis factor (TNF-α), mitochondrial dysfunction, and apoptosis, which ultimately cause the renal pathogenic process. Cisplatin itself enhances the generation of reactive oxygen species (ROS) and activation of nuclear factor-κB (NF-κB), inflammation, and mitochondrial dysfunction, which further leads to renal apoptosis. Cisplatin-induced nephropathy is also mediated through the p53 and protein kinase-Cδ (PKCδ) signalling pathways. This review explores these signalling alterations and their possible role in the pathogenesis of cisplatin-induced renal injury.
    European Journal of Clinical Pharmacology 08/2013; · 2.74 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The p53 tumor suppressor serves to secure genetic stability of multicellular organisms. It suppresses the accumulation of mutations in somatic cells and substantially decreases the probability of malignant diseases. The p53 gene acts highly selectively through multiple mechanisms. Under relatively favorable conditions, p53 helps to maintain intracellular homeostasis by balancing anabolic and catabolic processes and by timely elimination of reactive oxygen species. These functions of p53 facilitate maximal efficiency and survival of cells under conditions of physiological stresses. In the case of grave molecular damage caused by severe stress, a significant amount of highly active p53 is induced leading to irreversible growth arrest and programmed cell death. The induced functions of p53 secure the timely elimination from the organism of damaged and potentially dangerous cells. Collectively, the functions of p53 contribute to the prevention of malignant and other diseases and decelerate the aging process.
    Biochemistry (Moscow) 12/2010; 75(13):1692-721. · 1.15 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Cervical cancer is the most common gynaecological malignant disorder worldwide. The best possible treatment of locally advanced cervical cancer is a combination of radiation and cisplatin-based chemotherapy. However, 5-year overall survival is still only 52%. To improve treatment results, research should focus on the discovery of innovative drug strategies. Drugs directed at inducing tumour-cell apoptosis are regarded as important treatment modalities. Here, we present an overview of the molecular options that can change the apoptotic balance in cervical cancer, through increasing death-receptor-mediated apoptosis, the use of proteasome inhibitors, short interfering RNAs, or non-steroidal anti-inflammatory drugs (NSAIDs). Furthermore, the potential of attacking prosurvival signalling through the epidermal-growth-factor receptor and insulin-like-growth-factor receptor to support the apoptotic process is discussed. Additional research is needed to elucidate the clinical potential of these compounds in the treatment of cervical cancer.
    The Lancet Oncology 09/2005; 6(8):589-98. · 25.12 Impact Factor