Article

Functional brain abnormalities in young adults at genetic risk for late-onset Alzheimer's dementia.

Positron Emission Tomography Center, Banner Good Samaritan Medical Center, Phoenix, AZ 85006, USA.
Proceedings of the National Academy of Sciences (Impact Factor: 9.81). 02/2004; 101(1):284-9. DOI: 10.1073/pnas.2635903100
Source: PubMed

ABSTRACT Fluorodeoxyglucose positron emission tomography (PET) studies have found that patients with Alzheimer's dementia (AD) have abnormally low rates of cerebral glucose metabolism in posterior cingulate, parietal, temporal, and prefrontal cortex. We previously found that cognitively normal, late-middle-aged carriers of the apolipoprotein E epsilon4 allele, a common susceptibility gene for late-onset Alzheimer's dementia, have abnormally low rates of glucose metabolism in the same brain regions as patients with probable AD. We now consider whether epsilon4 carriers have these regional brain abnormalities as relatively young adults. Apolipoprotein E genotypes were established in normal volunteers 20-39 years of age. Clinical ratings, neuropsychological tests, magnetic resonance imaging, and PET were performed in 12 epsilon4 heterozygotes, all with the epsilon3/epsilon4 genotype, and 15 noncarriers of the epsilon4 allele, 12 of whom were individually matched for sex, age, and educational level. An automated algorithm was used to generate an aggregate surface-projection map that compared regional PET measurements in the two groups. The young adult epsilon4 carriers and noncarriers did not differ significantly in their sex, age, educational level, clinical ratings, or neuropsychological test scores. Like previously studied patients with probable AD and late-middle-aged epsilon4 carriers, the young epsilon4 carriers had abnormally low rates of glucose metabolism bilaterally in the posterior cingulate, parietal, temporal, and prefrontal cortex. Carriers of a common Alzheimer's susceptibility gene have functional brain abnormalities in young adulthood, several decades before the possible onset of dementia.

Full-text

Available from: Kewei Chen, Jun 03, 2015
0 Followers
 · 
95 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Studying ethnically diverse groups is important for furthering our understanding of biological mechanisms of disease that may vary across human populations. The ε4 allele of apolipoprotein E (APOE ε4) is a well-established risk factor for Alzheimer's disease (AD), and may confer anatomic and functional effects years before clinical signs of cognitive decline are observed. The allele frequency of APOE ε4 varies both across and within populations, and the size of the effect it confers for dementia risk may be affected by other factors. Our objective was to investigate the role APOE ε4 plays in moderating brain volume in cognitively normal Chinese older adults, compared to older white Americans. We hypothesized that carrying APOE ε4 would be associated with reduced brain volume and that the magnitude of this effect would be different between ethnic groups. We performed whole brain analysis of structural MRIs from Chinese living in America (n = 41) and Shanghai (n = 30) and compared them to white Americans (n = 71). We found a significant interaction effect of carrying APOE ε4 and being Chinese. The APOE ε4xChinese interaction was associated with lower volume in bilateral cuneus and left middle frontal gyrus (Puncorrected<0.001), with suggestive findings in right entorhinal cortex and left hippocampus (Puncorrected<0.01), all regions that are associated with neurodegeneration in AD. After correction for multiple testing, the left cuneus remained significantly associated with the interaction effect (PFWE = 0.05). Our study suggests there is a differential effect of APOE ε4 on brain volume in Chinese versus white cognitively normal elderly adults. This represents a novel finding that, if verified in larger studies, has implications for how biological, environmental and/or lifestyle factors may modify APOE ε4 effects on the brain in diverse populations.
    PLoS ONE 03/2015; 10(3):e0118338. DOI:10.1371/journal.pone.0118338 · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Healthy aging is associated with cognitive declines typically accompanied by increased task-related brain activity in comparison to younger counterparts. The Scaffolding Theory of Aging and Cognition (STAC) (Park and Reuter-Lorenz, 2009; Reuter-Lorenz and Park, 2014) posits that compensatory brain processes are responsible for maintaining normal cognitive performance in older adults, despite accumulation of aging-related neural damage. Cross-sectional studies indicate that cognitively intact elders at genetic risk for Alzheimer's disease (AD) demonstrate patterns of increased brain activity compared to low risk elders, suggesting that compensation represents an early response to AD-associated pathology. Whether this compensatory response persists or declines with the onset of cognitive impairment can only be addressed using a longitudinal design. The current prospective, 5-year longitudinal study examined brain activation in APOE ε4 carriers (N=24) and non-carriers (N=21). All participants, ages 65-85 and cognitively intact at study entry, underwent task-activated fMRI, structural MRI, and neuropsychological assessments at baseline, 18, and 57months. fMRI activation was measured in response to a semantic memory task requiring participants to discriminate famous from non-famous names. Results indicated that the trajectory of change in brain activation while performing this semantic memory task differed between APOE ε4 carriers and non-carriers. The APOE ε4 group exhibited greater activation than the Low Risk group at baseline, but they subsequently showed a progressive decline in activation during the follow-up periods with corresponding emergence of episodic memory loss and hippocampal atrophy. In contrast, the non-carriers demonstrated a gradual increase in activation over the 5-year period. Our results are consistent with the STAC model by demonstrating that compensation varies with the severity of underlying neural damage and can be exhausted with the onset of cognitive symptoms and increased structural brain pathology. Our fMRI results could not be attributed to changes in task performance, group differences in cerebral perfusion, or regional cortical atrophy. Copyright © 2015 Elsevier Inc. All rights reserved.
    NeuroImage 02/2015; 111. DOI:10.1016/j.neuroimage.2015.02.011 · 6.13 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Background/Aims: Patients with early-onset dementia (EOD) often present atypically, making an accurate diagnosis difficult. Single-photon emission-computed tomography (SPECT) provides an indirect measure of cerebral metabolic activity and can help to differentiate between dementia subtypes. This study aims to investigate the clinical utility of SPECT imaging in the diagnosis of early-onset Alzheimer's disease. Methods: All patients attending a tertiary referral clinic specialising in EOD between April 2012 and October 2013 were included in the study. Statistical analysis of SPECT patterns with clinical diagnoses, Addenbrooke's Cognitive Examination version 3 scores, and magnetic resonance imaging (MRI) atrophy was undertaken. Results: The results demonstrated a highly significant association between SPECT hypoperfusion patterns and clinical diagnoses. SPECT changes were demonstrated more frequently than MRI atrophy. Conclusions: The results suggest that SPECT imaging may be a useful adjunct to clinical evaluation and a more sensitive biomarker than standard structural imaging. © 2015 S. Karger AG, Basel.
    Dementia and Geriatric Cognitive Disorders 01/2015; 39(3-4):186-193. DOI:10.1159/000369551 · 2.81 Impact Factor