Article

Functional brain abnormalities in young adults at genetic risk for late-onset Alzheimer's dementia.

Positron Emission Tomography Center, Banner Good Samaritan Medical Center, Phoenix, AZ 85006, USA.
Proceedings of the National Academy of Sciences (Impact Factor: 9.81). 02/2004; 101(1):284-9. DOI: 10.1073/pnas.2635903100
Source: PubMed

ABSTRACT Fluorodeoxyglucose positron emission tomography (PET) studies have found that patients with Alzheimer's dementia (AD) have abnormally low rates of cerebral glucose metabolism in posterior cingulate, parietal, temporal, and prefrontal cortex. We previously found that cognitively normal, late-middle-aged carriers of the apolipoprotein E epsilon4 allele, a common susceptibility gene for late-onset Alzheimer's dementia, have abnormally low rates of glucose metabolism in the same brain regions as patients with probable AD. We now consider whether epsilon4 carriers have these regional brain abnormalities as relatively young adults. Apolipoprotein E genotypes were established in normal volunteers 20-39 years of age. Clinical ratings, neuropsychological tests, magnetic resonance imaging, and PET were performed in 12 epsilon4 heterozygotes, all with the epsilon3/epsilon4 genotype, and 15 noncarriers of the epsilon4 allele, 12 of whom were individually matched for sex, age, and educational level. An automated algorithm was used to generate an aggregate surface-projection map that compared regional PET measurements in the two groups. The young adult epsilon4 carriers and noncarriers did not differ significantly in their sex, age, educational level, clinical ratings, or neuropsychological test scores. Like previously studied patients with probable AD and late-middle-aged epsilon4 carriers, the young epsilon4 carriers had abnormally low rates of glucose metabolism bilaterally in the posterior cingulate, parietal, temporal, and prefrontal cortex. Carriers of a common Alzheimer's susceptibility gene have functional brain abnormalities in young adulthood, several decades before the possible onset of dementia.

0 Bookmarks
 · 
83 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Having a parent affected by late-onset Alzheimer's disease (AD) is a major risk factor for cognitively normal (NL) individuals. This study explores the potential of PET with (18)F-FDG and the amyloid- β (Aβ) tracer (11)C-Pittsburgh Compound B (PiB) for detection of individual risk in NL adults with AD-parents. FDG- and PiB-PET was performed in 119 young to late-middle aged NL individuals including 80 NL with positive family history of AD (FH+) and 39 NL with negative family history of any dementia (FH-). The FH+ group included 50 subjects with maternal (FHm) and 30 with paternal family history (FHp). Individual FDG and PiB scans were Z scored on a voxel-wise basis relative to modality-specific reference databases using automated procedures and rated as positive or negative (+/-) for AD-typical abnormalities using predefined criteria. To determine the effect of age, the cohort was separated into younger (49 ± 9 y) and older (68 ± 5 y) groups relative to the median age (60 y). Among individuals of age >60 y, as compared to controls, NL FH+ showed a higher frequency of FDG+ scans vs. FH- (53% vs. 6% p < 0.003), and a trend for PiB+ scans (27% vs. 11%; p = 0.19). This effect was observed for both FHm and FHp groups. Among individuals of age ≤60 y, NL FHm showed a higher frequency of FDG+ scans (29%) compared to FH- (5%, p = 0.04) and a trend compared to FHp (11%) (p = 0.07), while the distribution of PiB+ scans was not different between groups. In both age cohorts, FDG+ scans were more frequent than PiB+ scans among NL FH+, especially FHm (p < 0.03). FDG-PET was a significant predictor of FH+ status. Classification according to PiB status was significantly less successful. Automated analysis of FDG- and PiB-PET demonstrates higher rates of abnormalities in at-risk FH+ vs FH- subjects, indicating potentially ongoing early AD-pathology in this population. The frequency of metabolic abnormalities was higher than that of Aβ pathology in the younger cohort, suggesting that neuronal dysfunction may precede major aggregated Aβ burden in young NL FH+. Longitudinal follow-up is required to determine if the observed abnormalities predict future AD.
    Advances in Molecular Imaging 04/2014; 4(2):15-26.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Since the original publication describing the illness in 1907, the genetic understanding of Alzheimer's disease (AD) has advanced such that it is now clear that it is a genetically heterogeneous condition, the subtypes of which may not uniformly respond to a given intervention. It is therefore critical to characterize the clinical and preclinical stages of AD subtypes, including the rare autosomal dominant forms caused by known mutations in the PSEN1, APP, and PSEN2 genes that are being studied in the Dominantly Inherited Alzheimer Network study and its associated secondary prevention trial. Similar efforts are occurring in an extended Colombian family with a PSEN1 mutation, in APOE ε4 homozygotes, and in Down syndrome. Despite commonalities in the mechanisms producing the AD phenotype, there are also differences that reflect specific genetic origins. Treatment modalities should be chosen and trials designed with these differences in mind. Ideally, the varying pathological cascades involved in the different subtypes of AD should be defined so that both areas of overlap and of distinct differences can be taken into account. At the very least, clinical trials should determine the influence of known genetic factors in post hoc analyses.
    Current Neurology and Neuroscience Reports 11/2014; 14(11):499. · 3.67 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Alzheimer’s disease (AD) is characterized by deficits in cerebral metabolic rates of glucose in the posterior cingulate (PC) and precuneus in AD subjects, and in APOEε4 carriers, decades prior to the onset of measureable cognitive deficits. However, the cellular and molecular basis of this phenotype remains to be clarified. Given the roles of astrocytes in energy storage and brain immunity, we sought to characterize the transcriptome of AD PC astrocytes. Cells were laser capture microdissected from AD (n=10) and healthy elderly control (n=10) subjects for RNA sequencing. We generated >5.22 billion reads and compared sequencing data between controls and AD patients. We identified differentially expressed mitochondria-related genes including TRMT61B, FASTKD2, and NDUFA4L2, and using pathway and weighted gene co-expression analyses, we identified differentially expressed immune response genes. A number of these genes, including CLU, C3, and CD74, have been implicated in Abeta generation or clearance. This data provides key insights into astrocyte-specific contributions to AD and we present this data set as a publicly available resource.
    Neurobiology of Aging 10/2014; · 4.85 Impact Factor

Full-text (2 Sources)

Download
88 Downloads
Available from
May 31, 2014