Islet-sparing effects of protein tyrosine phosphatase-1b deficiency delays onset of diabetes in IRS2 knockout mice.

Howard Hughes Medical Institute, Joslin Diabetes Center, and Division of Endocrinology, Children's Hospital, Harvard Medical School, Boston, Massachusetts 02215, USA.
Diabetes (Impact Factor: 8.47). 02/2004; 53(1):61-6. DOI: 10.2337/diabetes.53.1.61
Source: PubMed

ABSTRACT Protein tyrosine phosphatase-1b (Ptp1b) inhibits insulin and leptin signaling by dephosphorylating specific tyrosine residues in their activated receptor complexes. Insulin signals are mediated by tyrosine phosphorylation of the insulin receptor and its downstream targets, such as Irs1 and Irs2. Irs2 plays an especially important role in glucose homeostasis because it mediates some peripheral actions of insulin and promotes pancreatic beta-cell function. To determine whether the deletion of Ptp1b compensates for the absence of Irs2, we analyzed mice deficient in both Ptp1b and Irs2. Pancreatic beta-cell area decreased in Ptp1b(-/-) mice, consistent with decreased insulin requirements owing to increased peripheral insulin sensitivity. By contrast, peripheral insulin sensitivity and beta-cell area increased in Irs2(-/-)::Ptp1b(-/-) mice, which improved glucose tolerance in Irs2(-/-)::Ptp1b(-/-) mice and delayed diabetes until 3 months of age. However, beta-cell function eventually failed to compensate for absence of Irs2. Our studies demonstrate a novel role for Ptp1b in regulating beta-cell homeostasis and indicate that Ptp1b deficiency can partially compensate for lack of Irs2.

  • The Journal of Korean Diabetes Association. 01/2006; 30(1).
  • [Show abstract] [Hide abstract]
    ABSTRACT: Insulin receptor substrate 2 (IRS2) is a widely expressed protein that regulates crucial biological processes including glucose metabolism, protein synthesis, and cell survival. IRS2 is part of the insulin - insulin-like growth factor (IGF) signaling pathway and mediates the activation of the phosphotidylinositol 3-kinase (PI3K)-Akt and the Ras-mitogen-activated protein kinase (MAPK) cascades in insulin target tissues and in the pancreas. The best evidence of this is that systemic elimination of the Irs2 in mice (Irs2(-/-)) recapitulates the pathogenesis of type 2 diabetes (T2D), in that diabetes arises as a consequence of combined insulin resistance and beta-cell failure. Indeed, work using this knockout mouse has confirmed the importance of IRS2 in the control of glucose homeostasis and especially in the survival and function of pancreatic beta-cells. These studies have shown that IRS2 is critically required for beta-cell compensation in conditions of increased insulin demand. Importantly, islets isolated from T2D patients exhibit reduced IRS2 expression, which supports the likely contribution of altered IRS2-dependent signaling to beta-cell failure in human T2D. For all these reasons, the Irs2(-/-) mouse has been and will be essential for elucidating the inter-relationship between beta-cell function and insulin resistance, as well as to delineate therapeutic strategies to protect beta-cells during T2D progression.
    Canadian Journal of Physiology and Pharmacology 06/2014; · 1.56 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Protein tyrosine phosphatase 1B (PTP1B) is a negative regulator of the insulin signalling pathway. It has been demonstrated that PTP1B deletion protects against the development of obesity and Type 2 Diabetes, mainly through its action on peripheral tissues. However, little attention has been paid to the role of PTP1B in β-cells. Therefore, our aim was to study the role of PTP1B in pancreatic β-cells. Silencing of PTP1B expression in a pancreatic β-cell line (MIN6 cells) reveals the significance of this endoplasmic reticulum bound phosphatase in the regulation of cell proliferation and apoptosis. Furthermore, the ablation of PTP1B is able to regulate key proteins involved in the proliferation and/or apoptosis pathways, such as STAT3, AKT, ERK1/2 and p53 in isolated islets from PTP1B knockout (PTP1B (-)/(-)) mice. Morphometric analysis of pancreatic islets from PTP1B (-)/(-) mice showed a higher β-cell area, concomitantly with higher β-cell proliferation and a lower β-cell apoptosis when compared to islets from their respective wild type (WT) littermates. At a functional level, isolated islets from 8 weeks old PTP1B (-)/(-) mice exhibit enhanced glucose-stimulated insulin secretion. Moreover, PTP1B (-)/(-) mice were able to partially reverse streptozotocin-induced β-cell loss. Together, our data highlight for the first time the involvement of PTP1B in β-cell physiology, reinforcing the potential of this phosphatase as a therapeutical target for the treatment of β-cell failure, a central aspect in the pathogenesis of Type 2 Diabetes.
    PLoS ONE 02/2014; 9(2):e90344. · 3.53 Impact Factor


Available from
May 23, 2014