Effects of endogenous carbon monoxide on collagen synthesis in pulmonary artery in rats under hypoxia.

Department of Pediatrics, First Hospital of Peking University, Xi An Men Street No. 1, Beijing 100034, PR China.
Life Sciences (Impact Factor: 2.56). 01/2004; 74(10):1225-41. DOI: 10.1016/j.lfs.2003.07.046
Source: PubMed

ABSTRACT To study the role of endogenous carbon monoxide (CO) in collagen metabolism during hypoxic pulmonary vascular remodeling, a total of 18 Wistar rats were used in the study and they were randomly divided into three groups: hypoxia group (n = 6), hypoxia with zinc protoporphyrin-IX (ZnPP-IX) group (n = 6) and control group (n = 6). The measurement of mean pulmonary artery pressure (mPAP) and carboxyhemoglobin (HbCO) formation in lung tissue homogenates was measured. A morphometric analysis of pulmonary vessels was performed, in which the percentage of muscularized arteries (MA); partially muscularized arteries (PMA) and nonmuscularized arteries (NMV) in small and median pulmonary vessels, relative medial thickness (RMT) and relative medial area (RMA) of pulmonary arteries were analyzed. Collagen type I and III and transforming growth factor-beta3 (TGF-beta3) expressions were detected by immunohistochemical assay. The expressions of procollagen type I and III and TGF-beta3 mRNA were detected by in situ hybridization. The results showed that ZnPP-IX significantly increased mPAP and markedly decreased HbCO formation in lung tissue homogenates in rats under hypoxia (P < 0.01). In the hypoxia rats treated with ZnPP-IX, the percentage of muscularized arteries of small and median pulmonary vessels was obviously increased, and RMT and RMA of intra-acinar muscularized pulmonary arteries were markedly increased compared with hypoxic rats. Ultrastructural changes, such as hyperplasia and hypertrophy of endothelial cells (ECs) and smooth muscle cells (SMCs) and the increased number of SMCs in synthetic phenotype were found in intra-acinar pulmonary muscularized arteries of hypoxic rats treated with ZnPP-IX. Meanwhile, ZnPP-IX promoted the expression of collagen type I and III and TGF-beta3 protein in pulmonary arteries of rats under hypoxia (P < 0.01). Furthermore, ZnPP-IX elevated obviously the expressions of procollagen type I and III mRNA, and TGF-beta3 mRNA in pulmonary arteries of rats under hypoxia (P < 0.01). The results of this study suggested that ZnPP-IX played an important role in promoting collagen synthesis in pulmonary arteries of rats with hypoxic pulmonary structural remodeling by increasing the expression of TGF-beta3. The above findings also suggested a possible role of endogenous CO in the pathogenesis of chronic hypoxic pulmonary hypertension.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Biomechanical weakening of the aorta leads to aneurysm formation and/or dissection and total biomechanical failure results in rupture, which is often fatal. The most common aneurysm is the abdominal aortic aneurysm (AAA) whereas thoracic aortic aneurysms (TAA) involve the ascending or descending segments of the aorta. Biomechanical strength of the aorta is maintained in part via balance between the integrity of the aortic medial and adventitial extracellular matrix and the health of the mural cells. From a biomechanical perspective, aneurysms rupture or dissect when wall stresses locally exceed the wall strength. Pathobiologic mechanisms, pre-disposing disorders and variability of patient demographic characteristics can weaken the aortic wall while increased blood pressure and dilatation increase the stress acting on it, leading to further aneurysm expansion. Thoracic and abdominal aortic aneurysms arise from very different pathophysiologies that ultimately result in a final common outcome of matrix degeneration and biomechanical failure. Therefore, the patient-specific knowledge of both wall stress and wall strength distributions for a given aneurysm will greatly improve the ability to identify those aortic aneurysms that are at highest risk of rupture. Towards this end, the biomechanics of AAA has been studied extensively by many groups whereas TAA biomechanics has not been fully considered. This chapter articulates the state-of-the-art of aortic biomechanics, including the modeling of tensile strength and wall stress distributions and the biological mechanisms which influence them. The potential clinical utility of these biomechanical estimates in predicting AAA rupture is also discussed.
    06/2011: pages 67-118;
  • [Show abstract] [Hide abstract]
    ABSTRACT: Fluorofenidone (AKF-PD) is a novel pyridone derivate that targets transforming growth factor-β1 (TGF-β1) signaling. Previous studies have proven that AKF-PD functions as an antifibrotic agent in pulmonary fibrosis and renal fibrosis models. Activated TGF-β1 signaling is thought to be a major feature of pulmonary hypertension (PH). TGF-β1 exerts powerful pro-proliferation effects on pulmonary arterial smooth muscle cells (PASMCs), and hence, prompts vascular remodeling. This study is designed to investigate the effect of AKF-PD on vascular remodeling in a rat model of hypoxia-induced PH. PH was induced in rats by 4 weeks of hypoxia. The expression of TGF-β1, collagen I, and collagen III was analyzed by ELISA, immunohistochemistry, real-time PCR, or Western blot. Proliferation of cultured PASMCs was determined by the BrdU incorporation method and flow cytometry. The results showed that AKF-PD treatment (0.5 or 1.0 g·(kg body mass)·d(-1)) for 4 weeks attenuated pulmonary vascular remodeling and improved homodynamic parameters. TGF-β1 level was significantly down-regulated by AKF-PD both in vivo and in vitro. Furthermore, hypoxia- and TGF-β1-induced PASMC proliferation and collagen expression were both significantly suppressed by AKF-PD. These results suggest that AKF-PD ameliorates the progression of PH induced by hypoxia in rats through its regulation of TGF-β1 expression, PASMC proliferation, and the extracellular matrix.
    Canadian Journal of Physiology and Pharmacology 01/2014; 92(1):58-69. · 1.56 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Transforming growth factor-β (TGF-β) is a multifunctional regulatory cytokine that is implicated in a variety of kidney diseases, including diabetic nephropathy and chronic transplant rejection, where it promotes stimulation of the extracellular matrix deposition, cell proliferation, and migration. TGF-β exerts its biological functions largely via its downstream complex signaling molecules, Smad proteins. Paradoxically, TGF-β also is essential for normal homeostasis and suppression of inflammation through mechanisms that are yet to be fully elucidated. One feasible mechanism by which TGF-β may exert its beneficial properties is through induction of heme oxygenase-1 (HO-1). Induction of this redox-sensitive enzyme is known to be cytoprotective through its potent antioxidant, anti-inflammatory, and anti-apoptotic properties in different conditions including several kidney diseases. In this overview, recent advances in our understanding of the role of TGF-β in kidney disease, its molecular regulation of HO-1 expression, and the potential role of HO-1 induction as a therapeutic modality in TGF-β-mediated kidney diseases are highlighted.
    Seminars in Nephrology 05/2012; 32(3):277-86. · 2.83 Impact Factor

Similar Publications