Purification and characterization of a 33 kDa serine protease from Acanthamoeba lugdunensis KA/E2 isolated from a Korean keratitis patient

Department of Neurology, Ulsan University College of Medicine, Ulsan 680-060, Republic of Korea.
The Korean Journal of Parasitology (Impact Factor: 0.97). 01/2004; 41(4):189-96. DOI: 10.3347/kjp.2003.41.4.189
Source: PubMed

ABSTRACT In order to evaluate the possible roles of secretory proteases in the pathogenesis of amoebic keratitis, we purified and characterized a serine protease secreted by Acanthamoeba lugdunensis KA/E2, isolated from a Korean keratitis patient. The ammonium sulfate-precipitated culture supernatant of the isolate was purified by sequential chromatography on CM-Sepharose, Sephacryl S-200, and mono Q-anion exchange column. The purified 33 kDa protease had a pH optimum of 8.5 and a temperature optimum of 55 degrees C. Phenylmethylsulfonylfluoride and 4-(2- Aminoethyl)-benzenesulfonyl-fluoride, both serine protease specific inhibitors, inhibited almost completely the activity of the 33 kDa protease whereas other classes of inhibitors did not affect its activity. The 33 kDa enzyme degraded various extracellular matrix proteins and serum proteins. Our results strongly suggest that the 33 kDa serine protease secreted from this keratopathogenic Acanthamoeba play important roles in the pathogenesis of amoebic keratitis, such as in corneal tissue invasion, immune evasion and nutrient uptake.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: There are evidences that Giardia trophozoites contain and/or release proteolytic enzymes that may be implicated in pathogenesis of giardiasis. This report describes a preliminary characterization of the proteolytic activity in excretory/secretory (E/S) products of Giardia duodenalis trophozoites of an axenic Brazilian strain (BTU-11) and the reference strain Portland 1 (P1). The protease activity of E/S products in conditioned medium by trophozoites of each strain was analyzed using substrate (gelatin and collagen) impregnated SDS-PAGE and hemoglobin assay. The protease characterization was based on inhibition assays including synthetic inhibitors. Proteolytic products were detected in the conditioned medium by trophozoites of both assayed strains. In the gels containing copolymerized gelatin and collagen, E/S products promoted degradation of the substrates and the most evident proteolysis zones were distributed in the migration regions of 77 to 18 kDa and 145 to 18 kDa, respectively, in the patterns of gelatinolytic and collagenolytic activities. Degradation of hemoglobin was also observed, and the pattern of hydrolysis was similar in both E/S products assayed. Inhibition assays showed that the main proteolytic activity in both E/S products is due to cysteine proteases although the presence of serine proteases was also indicated, mainly in the hydrolysis of hemoglobin.
    Parasitology Research 10/2008; 104(1):185-90. DOI:10.1007/s00436-008-1185-z · 2.33 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Cytopathic proteins are assumed to contribute to the pathogenicity of Acanthamoeba spp. due to their degrading capacity that is required for tissue invasion. In this study, a serine proteinase gene was demonstrated in a highly virulent Acanthamoeba keratitis causing strain with genotype T6. This gene was detected in both, the genomic DNA and the cDNA by PCR and subsequent sequencing. The gene fragment comprises about 500 bp and exhibits high sequence similarity to the serine proteinases of Acanthamoeba strains with genotype T4 and T12. The detection of a serine proteinase in this Acanthamoeba T6 strain is significant, because while T4 is the most common genotype among pathogenic Acanthamoeba strains and also T12 is known to be associated with disease, this is the only virulent Acanthamoeba T6 strain known to date. Obviously, this serine proteinase represents a common tool in pathogenic processes during Acanthamoeba infection.
    Experimental Parasitology 10/2006; 114(1):26-33. DOI:10.1016/j.exppara.2006.02.004 · 1.86 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Acanthamoeba are opportunistic protozoan parasites that can cause painful, visionthreatening keratitis. However the pathogenesis and pathophysiology of Acanthamoeba keratitis remain incompletely understood. Most cases of Acanthamoeba keratitis develop as a result of poor hygiene in contact lens care but it is unclear how amoebae transmigrate from the environment into the cornea leading to inflammation, photophobia and blindness. Acanthamoeba keratitis has become increasingly important in the past few decades due to increasing populations of contact lens users. The mechanisms associated with the pathogenesis of Acanthamoeba are highly complex, depending on the virulence properties of the parasite, host susceptibility and the environmental conditions. Complete understanding of Acanthamoeba pathogenesis and its associated risks factors should allow us to design strategies for disease prevention and for the rational development of therapeutic interventions against these devastating infections. Acanthamoeba keratitis has become a significant problem in recent years, especially in contact lens wearers exposed to contaminated water.


Available from